RESUMO
Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), ß2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.
Assuntos
Apresentação de Antígeno , Fibrossarcoma , Humanos , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma , Linfócitos T CD8-Positivos , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe IRESUMO
A small library of monovalent and bivalent Smac mimics was synthesized based on 2 types of monomers, with general structure NMeAla-Xaa-Pro-BHA (Xaa=Cys or Lys). Position 2 of the compounds was utilized to dimerize both types of monomers employing various bis-reactive linkers, as well as to modify selected compounds with lipids. The resulting library was screened in vitro against metastatic human breast cancer cell line MDA-MB-231, and the two most active compounds selected for in vivo studies. The most active lipid-conjugated analogue M11, showed in vivo activity while administered both subcutaneously and orally. Collectively, our findings suggest that lipidation may be a viable approach in the development of new Smac-based therapeutic leads.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Lipídeos/química , Proteínas Mitocondriais/química , Animais , Antineoplásicos/síntese química , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-AtividadeRESUMO
Nuclear factor erythroid 2-related factor 2 (NRF2) is recognized as a master transcription factor that regulates expression of numerous detoxifying and antioxidant cytoprotective genes. In fact, models of NRF2 deficiency indicate roles not only in redox regulation, but also in metabolism, inflammatory/autoimmune disease, cancer, and radioresistancy. Since ionizing radiation (IR) generates reactive oxygen species (ROS), it is not surprising it activates NRF2 pathways. However, unexpectedly, activation is often delayed for many days after the initial ROS burst. Here, we demonstrate that, as assayed by γ-H2AX staining, rapid DNA double strand break (DSB) formation by IR in primary mouse Nrf2-/- MEFs was not affected by loss of NRF2, and neither was DSB repair to any great extent. In spite of this, basal and IR-induced transformation was greatly enhanced, suggesting that NRF2 protects against late IR-induced genomic instability, at least in murine MEFs. Another possible IR- and NRF2-related event that could be altered is inflammation and NRF2 deficiency increased IR-induced NF-κB pro-inflammatory responses mostly late after exposure. The proclivity of NRF2 to restrain inflammation is also reflected in the reprogramming of tumor antigen-specific lymphocyte responses in mice where Nrf2 k.o. switches Th2 responses to Th1 polarity. Delayed NRF2 responses to IR may be critical for the immune transition from prooxidant inflammation to antioxidant healing as well as in driving cellular radioresistance and survival. Targeting NRF2 to reprogram immunity could be of considerable therapeutic benefit in radiation and immunotherapy.
RESUMO
We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits." Most of these hits could be allocated by maximal common substructure analysis to one of 11 clusters each containing at least three active compounds. Further screening validated 23 compounds as being most active; 15 of these were cherry-picked based on drug availability and tested for their ability to mitigate acute hematopoietic radiation syndrome (H-ARS) in mice. Of these, five bore a 4-nitrophenylsulfonamide motif while 4 had a quinoline scaffold. All but two of the 15 significantly (p < 0.05) mitigated H-ARS in mice. We had previously reported that the lead 4-(nitrophenylsulfonyl)-4-phenylpiperazine compound (NPSP512), was active in mitigating multiple acute and late radiation syndromes in mice of more than one sex and strain. Unfortunately, the formulation of this drug had to be changed for regulatory reasons and we report here on the synthesis and testing of active analogs of NPSP512 (QS1 and 52A1) that have increased solubility in water and in vivo bioavailability while retaining mitigator activity against H-ARS (p < 0.0001) and other radiation syndromes. The lead quinoline 057 was also active in multiple murine models of radiation damage. Taken together, HTS of a total of 150,000 bioactive or chemical substances, combined with maximal common substructure analysis has resulted in the discovery of diverse groups of compounds that can mitigate H-ARS and at least some of which can mitigate multiple radiation syndromes when given starting 24 h after exposure. We discuss what is known about how these agents might work, and the importance of formulation and bioavailability.
RESUMO
Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-ß/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.
Assuntos
MicroRNAs/genética , Lesões Experimentais por Radiação/genética , Pneumonite por Radiação/genética , Animais , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Feminino , Coração/efeitos da radiação , Humanos , Pulmão/metabolismo , Pulmão/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , MicroRNAs/metabolismo , Miocárdio/metabolismo , Modelos de Riscos Proporcionais , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/metabolismo , Pneumonite por Radiação/sangue , Pneumonite por Radiação/metabolismo , Especificidade da Espécie , Distribuição TecidualRESUMO
Intensive research is underway to find new agents that can successfully mitigate the acute effects of radiation exposure. This is primarily in response to potential counterthreats of radiological terrorism and nuclear accidents but there is some hope that they might also be of value for cancer patients treated with radiation therapy. Research into mitigation countermeasures typically employs classic animal models of acute radiation syndromes (ARS) that develop after whole-body irradiation (WBI). While agents are available that successfully mitigate ARS when given after radiation exposure, their success raises questions as to whether they simply delay lethality or unmask potentially lethal radiation pathologies that may appear later in time. Life shortening is a well-known consequence of WBI in humans and experimental animals, but it is not often examined in a mitigation setting and its causes, other than cancer, are not well-defined. This is in large part because delayed effects of acute radiation exposure (DEARE) do not follow the strict time-dose phenomena associated with ARS and present as a diverse range of symptoms and pathologies with low mortality rates that can be evaluated only with the use of large cohorts of subjects, as in this study. Here, we describe chronically increased mortality rates up to 660 days in large numbers of mice given LD70/30 doses of WBI. Systemic myeloid cell activation after WBI persists in some mice and is associated with late immunophenotypic changes and hematopoietic imbalance. Histopathological changes are largely of a chronic inflammatory nature and variable incidence, as are the clinical symptoms, including late diarrhea that correlates temporally with changes in the content of the microbiome. We also describe the acute and long-term consequences of mitigating hematopoietic ARS (H-ARS) lethality after LD70/30 doses of WBI in multiple cohorts of mice treated uniformly with radiation mitigators that have a common 4-nitro-phenylsulfonamide (NPS) pharmacophore. Effective NPS mitigators dramatically decrease ARS mortality. There is slightly increased subacute mortality, but the rate of late mortalities is slowed, allowing some mice to live a normal life span, which is not the case for WBI controls. The study has broad relevance to radiation late effects and their potential mitigation and epitomizes the complex interaction between radiation-damaged tissues and immune homeostasis.
Assuntos
Síndrome Aguda da Radiação/imunologia , Síndrome Aguda da Radiação/prevenção & controle , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/efeitos da radiação , Protetores contra Radiação/farmacologia , Síndrome Aguda da Radiação/microbiologia , Síndrome Aguda da Radiação/mortalidade , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Coração/efeitos dos fármacos , Coração/efeitos da radiação , Masculino , Camundongos , Neoplasias Induzidas por Radiação/imunologia , Neoplasias Induzidas por Radiação/microbiologia , Neoplasias Induzidas por Radiação/mortalidade , Neoplasias Induzidas por Radiação/prevenção & controle , Sulfonamidas/farmacologia , Análise de SobrevidaRESUMO
Purpose: This study examined the feasibility, efficacy (abscopal effect), and immune effects of TGFß blockade during radiotherapy in metastatic breast cancer patients.Experimental Design: Prospective randomized trial comparing two doses of TGFß blocking antibody fresolimumab. Metastatic breast cancer patients with at least three distinct metastatic sites whose tumor had progressed after at least one line of therapy were randomized to receive 1 or 10 mg/kg of fresolimumab, every 3 weeks for five cycles, with focal radiotherapy to a metastatic site at week 1 (three doses of 7.5 Gy), that could be repeated to a second lesion at week 7. Research bloods were drawn at baseline, week 2, 5, and 15 to isolate PBMCs, plasma, and serum.Results: Twenty-three patients were randomized, median age 57 (range 35-77). Seven grade 3/4 adverse events occurred in 5 of 11 patients in the 1 mg/kg arm and in 2 of 12 patients in the 10 mg/kg arm, respectively. Response was limited to three stable disease. At a median follow up of 12 months, 20 of 23 patients are deceased. Patients receiving the 10 mg/kg had a significantly higher median overall survival than those receiving 1 mg/kg fresolimumab dose [hazard ratio: 2.73 with 95% confidence interval (CI), 1.02-7.30; P = 0.039]. The higher dose correlated with improved peripheral blood mononuclear cell counts and a striking boost in the CD8 central memory pool.Conclusions: TGFß blockade during radiotherapy was feasible and well tolerated. Patients receiving the higher fresolimumab dose had a favorable systemic immune response and experienced longer median overall survival than the lower dose group. Clin Cancer Res; 24(11); 2493-504. ©2018 AACR.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Radioterapia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Biomarcadores , Neoplasias da Mama/etiologia , Neoplasias da Mama/mortalidade , Terapia Combinada , Monitoramento de Medicamentos , Feminino , Humanos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioterapia/métodos , Análise de Sobrevida , Resultado do TratamentoRESUMO
Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.
Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Piperazinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/efeitos da radiaçãoRESUMO
The ability to recognize and respond to universal molecular patterns on invading microorganisms allows our immune system to stay on high alert, sensing danger to our self-integrity. Our own damaged cells and tissues in pathological situations activate similar warning systems as microbes. In this way, the body is able to mount a response that is appropriate to the danger. Toll-like receptors are at the heart of this pattern recognition system that initiates innate pro-oxidant, pro-inflammatory signaling cascades and ultimately bridges recognition of danger to adaptive immunity. The acute inflammatory lesions that are formed segue into resolution of inflammation, repair and healing or, more dysfunctionally, into chronic inflammation, autoimmunity, excessive tissue damage and carcinogenesis. Redox is at the nexus of this decision making process and is the point at which ionizing radiation initially intercepts to trigger similar responses to self-damage. In this review we discuss our current understanding of how radiation-damaged cells interact with Toll-like receptors and how the immune systems interprets these radiation-induced danger signals in the context of whole-body exposures and during local tumor irradiation.
Assuntos
Lesões por Radiação/metabolismo , Receptores Toll-Like/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/efeitos da radiação , Inflamação/imunologia , Inflamação/metabolismo , Lesões por Radiação/imunologia , Lesões por Radiação/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Toll-Like/imunologiaRESUMO
The immune system has the power to modulate the expression of radiation-induced normal and tumor tissue damage. On the one hand, it can contribute to cancer cure, and on the other hand, it can influence acute and late radiation side effects, which in many ways resemble acute and chronic inflammatory disease states. The way radiation-induced inflammation feeds into adaptive antigen-specific immune responses adds another dimension to the tumor-host cross talk during radiation therapy and to possible radiation-driven autoimmune responses. Understanding how radiation affects inflammation and immunity is therefore critical if we are to effectively manipulate these forces for benefit in radiation oncology treatments.
Assuntos
Sistema Imunitário/imunologia , Sistema Imunitário/efeitos da radiação , Inflamação/imunologia , Neoplasias/radioterapia , Lesões por Radiação/imunologia , Humanos , Neoplasias/imunologiaRESUMO
Cells often autofluoresce in response to UV radiation excitation and this can reflect critical aspects of cellular metabolism. Here we report that many different human and murine cell types respond to ionizing radiation with a striking rise in autofluorescence that is dependent on dose and time. There was a highly reproducible fluorescent shift at various wavelengths, which was mirrored by an equally reproducible rise in the vital intracellular metabolic co-factors FAD and NADH. It appears that mitochondria, metabolism and Ca(2+) homeostasis are important for this to occur as cells without mitochondria or cells unable to alter calcium levels did not behave in this way. We believe these radiation-induced changes are of biological importance and that autofluorescence may even provide us with a tool to monitor radiation responses in the clinic.
Assuntos
Radiação Ionizante , Animais , Cálcio/metabolismo , Linhagem Celular , Feminino , Flavina-Adenina Dinucleotídeo/química , Citometria de Fluxo/métodos , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Modelos Biológicos , NAD/química , Fatores de Tempo , Raios UltravioletaRESUMO
PURPOSE: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. METHODS AND MATERIALS: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4(+)CD25(hi)Foxp3(+) T cells. RESULTS: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. CONCLUSIONS: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.
Assuntos
Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Neoplasias/imunologia , Fracionamento da Dose de Radiação , ELISPOT/métodos , Feminino , Interferon gama/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Baço/imunologia , EsplenectomiaRESUMO
Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling "danger." The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the "brakes" on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.