Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 15(43): e1902976, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31544313

RESUMO

The colloidal probe technique, which is based on the atomic force microscope, revolutionizes direct force measurements in many fields, such as interface science or biomechanics. It allows for the first time to determine interaction forces on the single particle or cell level. However, for many applications, important "blind spots" remain, namely, the possibility to probe interaction potentials for nanoparticles or complex colloids with a soft outer shell. Definitely, these are colloidal systems that are currently of major industrial importance and interest from theory. The here-presented novel approach allows for overcome the aforementioned limitations. Its applicability has been demonstrated for 300 nm sized carboxylate-modified latex particles as well as sub-micron core-shell particles with a soft poly-N-isopropylacrylamide hydrogel shell and a rigid silica core. For the latter, which until now cannot be studied by the colloidal probe technique, determined is the temperature dependency of electrosteric and adhesion forces has been determined on the single particle level.

2.
Langmuir ; 34(3): 886-895, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28753321

RESUMO

Colloidal particles are extensively used to assemble materials from bulk suspensions or after adsorption and confinement at fluid interfaces (e.g., oil-water interfaces). Interestingly, and often underestimated, optimizing interactions for bulk assembly may not lead to the same behavior at fluid interfaces. In this work, we compare model composite nanoparticles with a silica core coated with a poly-N-isopropylacrylamide hydrogel shell in bulk aqueous suspensions and after adsorption at an oil-water interface. Bulk properties are analyzed by confocal differential dynamic microscopy, a recently developed technique that allows one to simultaneously obtain structural and dynamical information up to high volume fractions. The results demonstrate excellent colloidal stability and the absence of aggregation in all cases. The behavior at the interface, investigated by a range of complementary approaches, is instead different. The same hydrogel shells that stabilize the particles in the bulk deform at the interface and induce attractive capillary interactions that lead to aggregation even at very low area fractions (surface coverage). Upon further compression of a particle-laden interface, a structural transition is observed where closely packed particle aggregates form. These findings emphasize the manifestation of different, and possibly unexpected, responses for sterically stabilized nanoparticles in the bulk and upon interfacial confinement.

3.
Langmuir ; 34(50): 15370-15382, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444370

RESUMO

We investigate the conformation, position, and dynamics of core-shell nanoparticles (CSNPs) composed of a silica core encapsulated in a cross-linked poly( N-isopropylacrylamide) shell at a water-oil interface for a systematic range of core sizes and shell thicknesses. We first present a free-energy model that we use to predict the CSNP wetting behavior at the interface as a function of its geometrical and compositional properties in the bulk phases, which is in good agreement with our experimental data. Remarkably, based on the knowledge of the polymer shell deformability, the equilibrium particle position relative to the interface plane, an often elusive experimental quantity, can be extracted by measuring its radial dimensions after adsorption. For all the systems studied here, the interfacial dimensions are always larger than in bulk and the particle core resides in a configuration, wherein it just touches the interface or is fully immersed in water. Moreover, the stretched shell induces a larger viscous drag at the interface, which appears to depend solely on the interfacial dimensions, irrespective of the portion of the CSNP surface exposed to the two fluids. Our findings indicate that tailoring the architecture of CSNPs can be used to control their properties at the interface, as of interest for applications including emulsion stabilization and nanopatterning.

4.
Langmuir ; 34(3): 854-867, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28767251

RESUMO

Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core-shell particles, in particular, the development of new photonic materials from plasmonic nanocrystals.

5.
Sci Rep ; 9(1): 20294, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889103

RESUMO

The combination of atomic force microscopy (AFM) with nanofluidics, also referred to as FluidFM, has facilitated new applications in scanning ion conductance microscopy, direct force measurements, lithography, or controlled nanoparticle deposition. An essential element of this new type of AFMs is its cantilever, which bears an internal micro-channel with a defined aperture at the end. Here, we present a new approach for in-situ characterization of the internal micro-channels, which is non-destructive and based on electrochemical methods. It allows for probing the internal environment of a micro-channeled cantilever and the corresponding aperture, respectively. Acquiring the streaming current in the micro-channel allows to determine not only the state of the aperture over a wide range of ionic strengths but also the surface chemistry of the cantilever's internal channel. The high practical applicability of this method is demonstrated by detecting the aspiration of polymeric, inorganic and hydrogel particles with diameters ranging from several µm down to 300 nm. By verifying in-situ the state of the aperture, i.e. open versus closed, electrophysiological or nano-deposition experiments will be significantly facilitated. Moreover, our approach is of high significance for direct force measurements by the FluidFM-technique and sub-micron colloidal probes.

6.
Nanoscale ; 10(47): 22189-22195, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30484471

RESUMO

The realization of non-close-packed nanoscale patterns with multiple feature sizes and length scales via colloidal self-assembly is a highly challenging task. We demonstrate here the creation of a variety of tunable particle arrays by harnessing the sequential self-assembly and deposition of two differently sized microgel particles at the fluid-fluid interface. The two-step process is essential to achieve a library of 2D binary colloidal alloys, which are kinetically inaccessible by direct co-assembly. These versatile binary patterns can be exploited for a range of end-uses. Here we show that they can for instance be transferred to silicon substrates, where they act as masks for the metal-assisted chemical etching of binary arrays of vertically aligned silicon nanowires (VA-SiNWs) with fine geometrical control. In particular, continuous binary gradients in both NW spacing and height can be achieved. Notably, these binary VA-SiNW platforms exhibit interesting anti-reflective properties in the visible range, in agreement with simulations. The proposed strategy can also be used for the precise placement of metallic nanoparticles in non-close-packed arrays. Sequential depositions of soft particles enable therefore the exploration of complex binary patterns, e.g. for the future development of substrates for biointerfaces, catalysis and controlled wetting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA