Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(22): e2117675119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35613056

RESUMO

Fibrin is the fibrous protein network that comprises blood clots; it is uniquely capable of bearing very large tensile strains (up to 200%) due to multiscale force accommodation mechanisms. Fibrin is also a biochemical scaffold for numerous enzymes and blood factors. The biomechanics and biochemistry of fibrin have been independently studied. However, comparatively little is known about how fibrin biomechanics and biochemistry are coupled: how does fibrin deformation influence its biochemistry? In this study, we show that mechanically induced protein structural changes in fibrin affect fibrin biochemistry. We find that tensile deformation of fibrin leads to molecular structural transitions of α-helices to ß-sheets, which reduced binding of tissue plasminogen activator (tPA), an enzyme that initiates fibrin lysis. Moreover, binding of tPA and Thioflavin T, a commonly used ß-sheet marker, were mutually exclusive, further demonstrating the mechano-chemical control of fibrin biochemistry. Finally, we demonstrate that structural changes in fibrin suppressed the biological activity of platelets on mechanically strained fibrin due to reduced αIIbß3 integrin binding. Our work shows that mechanical strain regulates fibrin molecular structure and biological activity in an elegant mechano-chemical feedback loop, which possibly extends to other fibrous biopolymers.


Assuntos
Fibrina , Estresse Mecânico , Resistência à Tração , Benzotiazóis/química , Fibrina/química , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Ativador de Plasminogênio Tecidual/química
2.
Cancer Cell Int ; 24(1): 199, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840117

RESUMO

The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].

3.
Soft Matter ; 19(35): 6710-6720, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622379

RESUMO

Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load-displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load-displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials.


Assuntos
Aprendizado de Máquina , Nanotecnologia , Redes Neurais de Computação
4.
Finite Elem Anal Des ; 2132023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37168239

RESUMO

Augmented reality (AR) has revolutionized the video game industry by providing interactive, three-dimensional visualization. Interestingly, AR technology has only been sparsely used in scientific visualization. This is, at least in part, due to the significant technical challenges previously associated with creating and accessing such models. To ease access to AR for the scientific community, we introduce a novel visualization pipeline with which they can create and render AR models. We demonstrate our pipeline by means of finite element results, but note that our pipeline is generally applicable to data that may be represented through meshed surfaces. Specifically, we use two open-source software packages, ParaView and Blender. The models are then rendered through the platform, which we access through Android and iOS smartphones. To demonstrate our pipeline, we build AR models from static and time-series results of finite element simulations discretized with continuum, shell, and beam elements. Moreover, we openly provide python scripts to automate this process. Thus, others may use our framework to create and render AR models for their own research and teaching activities.

5.
Philos Trans A Math Phys Eng Sci ; 380(2234): 20210365, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36031838

RESUMO

Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.


Assuntos
Encéfalo , Modelos Biológicos , Fenômenos Biomecânicos , Elasticidade , Análise de Elementos Finitos , Estresse Mecânico
6.
Soft Matter ; 16(43): 9908-9916, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33029598

RESUMO

When a thrombus breaks off and embolizes it can occlude vital vessels such as those of the heart, lung, or brain. These thromboembolic conditions are responsible for 1 in 4 deaths worldwide. Thrombus resistance to embolization is driven by its intrinsic fracture toughness as well as other, non-surface-creating dissipative mechanisms. In our current work, we identify and quantify these latter mechanisms toward future studies that aim to delineate fracture from other forms of dissipation. To this end, we use an in vitro thrombus mimic system to produce whole blood clots and explore their dissipative mechanics under simple uniaxial extension, cyclic loading, and stress-relaxation. We found that whole blood clots exhibit Mullins-like effect, hysteresis, permanent set, strain-rate dependence, and nonlinear stress-relaxation. Interestingly, we found that performing these tests under dry or submerged conditions did not change our results. However, performing these tests under room temperature or body temperature conditions yielded differences. Importantly, because we use venous blood our work is most closely related to venous in vivo blood clots. Overall, we have demonstrated that whole blood clots show several dissipative phenomena - similarly to hydrogels - that will be critical to our understanding of thrombus embolization.


Assuntos
Trombose , Coagulação Sanguínea , Encéfalo , Humanos
7.
J Mech Phys Solids ; 63: 128-140, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24563551

RESUMO

Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression.

8.
Biomech Model Mechanobiol ; 23(2): 553-568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38129671

RESUMO

The skin is the largest organ in the human body and serves various functions, including mechanical protection and mechanosensation. Yet, even though skin's biomechanics are attributed to two main layers-epidermis and dermis-computational models have often treated this tissue as a thin homogeneous material or, when considering multiple layers, have ignored the most prominent heterogeneities of skin seen at the mesoscale. Here, we create finite element models of representative volume elements (RVEs) of skin, including the three-dimensional variation of the interface between the epidermis and dermis as well as considering the presence of hair follicles. The sinusoidal interface, which approximates the anatomical features known as Rete ridges, does not affect the homogenized mechanical response of the RVE but contributes to stress concentration, particularly at the valleys of the Rete ridges. The stress profile is three-dimensional due to the skin's anisotropy, leading to high-stress bands connecting the valleys of the Rete ridges through one type of saddle point. The peaks of the Rete ridges and the other class of saddle points of the sinusoidal surface form a second set of low-stress bands under equi-biaxial loading. Another prominent feature of the heterogeneous stress pattern is a switch in the stress jump across the interface, which becomes lower with respect to the flat interface at increasing deformations. These features are seen in both tension and shear loading. The RVE with the hair follicle showed strains concentrating at the epidermis adjacent to the hair follicle, the epithelial tissue surrounding the hair right below the epidermis, and the bulb or base region of the hair follicle. The regions of strain concentration near the hair follicle in equi-biaxial and shear loading align with the presence of distinct mechanoreceptors in the skin, except for the bulb or base region. This study highlights the importance of skin heterogeneities, particularly its potential mechanophysiological role in the sense of touch and the prevention of skin delamination.


Assuntos
Epiderme , Pele , Humanos , Folículo Piloso , Fenômenos Biomecânicos
9.
J Mech Behav Biomed Mater ; 152: 106453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335648

RESUMO

Tricuspid valve leaflets have historically been considered "passive flaps". However, we have recently shown that tricuspid leaflets actively remodel in sheep with functional tricuspid regurgitation. We hypothesize that these remodeling-induced changes reduce leaflet coaptation and, therefore, contribute to valvular dysfunction. To test this, we simulated the impact of remodeling-induced changes on valve mechanics in a reverse-engineered computer model of the human tricuspid valve. To this end, we combined right-heart pressures and tricuspid annular dynamics recorded in an ex vivo beating heart, with subject-matched in vitro measurements of valve geometry and material properties, to build a subject-specific finite element model. Next, we modified the annular geometry and boundary conditions to mimic changes seen in patients with pulmonary hypertension. In this model, we then increased leaflet thickness and stiffness and reduced the stretch at which leaflets stiffen, which we call "transition-λ." Subsequently, we quantified mean leaflet stresses, leaflet systolic angles, and coaptation area as measures of valve function. We found that leaflet stresses, leaflet systolic angle, and coaptation area are sensitive to independent changes in stiffness, thickness, and transition-λ. When combining thickening, stiffening, and changes in transition-λ, we found that anterior and posterior leaflet stresses decreased by 26% and 28%, respectively. Furthermore, systolic angles increased by 43%, and coaptation area decreased by 66%; thereby impeding valve function. While only a computational study, we provide the first evidence that remodeling-induced leaflet thickening and stiffening may contribute to valvular dysfunction. Targeted suppression of such changes in diseased valves could restore normal valve mechanics and promote leaflet coaptation.


Assuntos
Hipertensão Pulmonar , Valva Tricúspide , Humanos , Animais , Ovinos , Catéteres , Simulação por Computador , Pressão
10.
Artigo em Inglês | MEDLINE | ID: mdl-38771453

RESUMO

PURPOSE: One in four deaths worldwide is due to thromboembolic disease; that is, one in four people die from blood clots first forming and then breaking off or embolizing. Once broken off, clots travel downstream, where they occlude vital blood vessels such as those of the brain, heart, or lungs, leading to strokes, heart attacks, or pulmonary embolisms, respectively. Despite clots' obvious importance, much remains to be understood about clotting and clot embolization. In our work, we take a first step toward untangling the mystery behind clot embolization and try to answer the simple question: "What makes blood clots break off?" METHODS: To this end, we conducted experimentally-informed, back-of-the-envelope computations combining fracture mechanics and phase-field modeling. We also focused on deep venous clots as our model problem. RESULTS: Here, we show that of the three general forces that act on venous blood clots-shear stress, blood pressure, and wall stretch-induced interfacial forces-the latter may be a critical embolization force in occlusive and non-occlusive clots, while blood pressure appears to play a determinant role only for occlusive clots. Contrary to intuition and prior reports, shear stress, even when severely elevated, appears unlikely to cause embolization. CONCLUSION: This first approach to understanding the source of blood clot bulk fracture may be a critical starting point for understanding blood clot embolization. We hope to inspire future work that will build on ours and overcome the limitations of these back-of-the-envelope computations.

11.
Acta Biomater ; 175: 106-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042263

RESUMO

Skin aging is of immense societal and, thus, scientific interest. Because mechanics play a critical role in skin's function, a plethora of studies have investigated age-induced changes in skin mechanics. Nonetheless, much remains to be learned about the mechanics of aging skin. This is especially true when considering sex as a biological variable. In our work, we set out to answer some of these questions using mice as a model system. Specifically, we combined mechanical testing, histology, collagen assays, and two-photon microscopy to identify age- and sex-dependent changes in skin mechanics and to relate them to structural, microstructural, and compositional factors. Our work revealed that skin stiffness, thickness, and collagen content all decreased with age and were sex dependent. Interestingly, sex differences in stiffness were age induced. We hope our findings not only further our fundamental understanding of skin aging but also highlight both age and sex as important variables when conducting studies on skin mechanics. STATEMENT OF SIGNIFICANCE: Our work addresses the question, "How do sex and age affect the mechanics of skin?" Answering this question is of both scientific and societal importance. We do so in mice as a model system. Thereby, we hope to add clarity to a body of literature that appears divided on the effect of both factors. Our findings have important implications for those studying age and sex differences, especially in mice as a model system.


Assuntos
Envelhecimento da Pele , Feminino , Camundongos , Masculino , Animais , Colágeno/química , Pele , Testes Mecânicos
12.
Data Brief ; 52: 110051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299102

RESUMO

Tricuspid valve annuloplasty is the gold standard surgical treatment for functional tricuspid valve regurgitation. During this procedure, ring-like devices are implanted to reshape the diseased tricuspid valve annulus and to restore function. For the procedure, surgeons can choose from multiple available device options varying in shape and size. In this article, we provide the three-dimensional (3D) scanned geometry (*.stl) and reduced midline (*.vtk) of five different annuloplasty devices of all commercially available sizes. Three-dimensional images were captured using a 3D scanner. After extracting the surface geometry from these images, the images were converted to 3D point clouds and skeletonized to generate a 3D midline of each device. In total, we provide 30 data sets comprising the Edwards Classic, Edwards MC3, Edwards Physio, Medtronic TriAd, and Medtronic Contour 3D of sizes 26-36. This dataset can be used in computational models of tricuspid valve annuloplasty repair to inform accurate repair geometry and boundary conditions. Additionally, others can use these data to compare and inspire new device shapes and sizes.

13.
JTCVS Open ; 17: 111-120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420560

RESUMO

Background: Tricuspid valve disease significantly affects 1.6 million Americans. The gold standard treatment for tricuspid disease is the implantation of annuloplasty devices. These ring-like devices come in various shapes and sizes. Choices for both shape and size are most often made by surgical intuition rather than scientific rationale. Methods: To understand the impact of shape and size on valve mechanics and to provide a rational basis for their selection, we used a subject-specific finite element model to conduct a virtual case study. That is, we implanted 4 different annuloplasty devices of 6 different sizes in our virtual patient. After each virtual surgery, we computed the coaptation area, leaflet end-systolic angles, leaflet stress, and chordal forces. Results: We found that contoured devices are better at normalizing end-systolic angles, whereas the one flat device, the Edwards Classic, maximized the coaptation area and minimized leaflet stress and chordal forces. We further found that reducing device size led to increased coaptation area but also negatively impacted end-systolic angles, stress, and chordal forces. Conclusions: Based on our analyses of the coaptation area, leaflet motion, leaflet stress, and chordal forces, we found that device shape and size have a significant impact on valve mechanics. Thereby, our study also demonstrates the value of simulation tools and device tests in "virtual patients." Expanding our study to many more valves may, in the future, allow for universal recommendations.

14.
J Mech Behav Biomed Mater ; 154: 106508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513312

RESUMO

Thromboembolism - that is, clot formation and the subsequent fragmentation of clot - is a leading cause of death worldwide. Clots' mechanical properties are critical determinants of both the embolization process and the pathophysiological consequences thereof. Thus, understanding and quantifying the mechanical properties of clots is important to our ability to treat and prevent thromboembolic disease. However, assessing these properties from in vivo clots is experimentally challenging. Therefore, we and others have turned to studying in vitro clot mimics instead. Unfortunately, there are significant discrepancies in the reported properties of these clot mimics, which have been hypothesized to arise from differences in experimental techniques and blood sources. The goal of our current work is therefore to compare the mechanical behavior of clots made from the two most common sources, human and bovine blood, using the same experimental techniques. To this end, we tested clots under pure shear with and without initial cracks, under cyclic loading, and under stress relaxation. Based on these data, we computed and compared stiffness, strength, work-to-rupture, fracture toughness, relaxation time constants, and prestrain. While clots from both sources behaved qualitatively similarly, they differed quantitatively in almost every metric. We also correlated each mechanical metric to measures of blood composition. Thereby, we traced this inter-species variability in clot mechanics back to significant differences in hematocrit, but not platelet count. Thus, our work suggests that the results of past studies that have used bovine blood to make in vitro mimics - without adjusting blood composition - should be interpreted carefully. Future studies about the mechanical properties of blood clots should focus on human blood alone.


Assuntos
Tromboembolia , Trombose , Humanos , Animais , Bovinos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38830034

RESUMO

OBJECTIVES: Severe functional tricuspid regurgitation (FTR) is associated with subvalvular remodelling, but leaflet tissue alterations may also contribute. We set out to investigate molecular mechanisms driving leaflet remodelling in chronic ovine FTR. METHODS: Thirteen adult sheep (55 ± 4kg) underwent left thoracotomy, epicardial echocardiography, and pulmonary artery banding (PAB) to induce right heart failure and FTR. After 16 weeks, 13 banded (FTR) and 12 control (CTL) animals underwent median sternotomy for epicardial echocardiography and were subsequently sacrificed with each tricuspid leaflet tissue harvested for RNA-seq and histology. RESULTS: After 16 weeks, 7 animals developed severe, 2 moderate, and 4 mild tricuspid regurgitation (TR). Relative to CTL, FTR animals had increased PAP, TR, tricuspid annular diameter, and right atrial volume, while tricuspid annular plane systolic excursion (TAPSE) and RV fractional area change decreased. FTR leaflets exhibited altered constituents and an increase in cellularity. RNA-seq identified 85 significantly differentially expressed genes (DEG) with 17, 53, and 127 within the anterior, posterior, and septal leaflets respectively. RRM2, PRG4, and CXCL8 (IL-8) were identified as DEGs across all leaflets and CXCL8 was differentially expressed between FTR severity grades. RRM2, PRG4, and CXCL8 significantly correlated with TAPSE, and this correlation was consistent regardless of the anatomical location of the leaflet. CONCLUSIONS: PAB in our ovine model resulted in RV failure and FTR. Leaflet RNA-seq identified several DEGs, specifically RRM2, PRG4, and CXCL8, with known roles in tissue remodelling. These data along with an overall increase in leaflet cellularity suggest tricuspid leaflets actively remodel in FTR.

16.
Circulation ; 126(11 Suppl 1): S231-8, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22965988

RESUMO

BACKGROUND: We hypothesized that annuloplasty ring implantation alters mitral annular strains in a normal beating ovine heart preparation. METHODS AND RESULTS: Sheep had 16 radiopaque markers sewn equally spaced around the mitral annulus. Edwards Cosgrove partial flexible band (COS; n=12), St Jude complete rigid saddle-shaped annuloplasty ring (RSA; n=10), Carpentier-Edwards Physio (PHY; n=11), Edwards IMR ETlogix (ETL; n=11), and GeoForm (GEO; n=12) annuloplasty rings were implanted in a releasable fashion. Four-dimensional marker coordinates were obtained using biplane videofluoroscopy with the ring inserted (ring) and after ring release (control). From marker coordinates, a functional spatio-temporal representation of each annulus was generated through a best fit using 16 piecewise cubic Hermitian splines. Absolute total mitral annular ring strains were calculated from the relative change in length of the tangent vector to the annular curve as strains occurring from control to ring state at end-systole. In addition, average Green-Lagrange strains occurring from control to ring state at end-systole along the annulus were calculated. Absolute total mitral annular ring strains were smallest for COS and greatest for ETL. Strains for RSA, PHY, and GEO were similar. Except for COS in the septal mitral annular segment, all rings induced compressive strains along the entire annulus, with greatest values occurring at the lateral mitral annular segment. CONCLUSIONS: In healthy, beating ovine hearts, annuloplasty rings (COS, RSA, PHY, ETL, and GEO) induce compressive strains that are predominate in the lateral annular region, smallest for flexible partial bands (COS) and greatest for an asymmetrical rigid ring type with intrinsic septal-lateral downsizing (ETL). However, the ring type with the most drastic intrinsic septal-lateral downsizing (GEO) introduced strains similar to physiologically shaped rings (RSA and PHY), indicating that ring effects on annular strain profiles cannot be estimated from the degree of septal-lateral downsizing.


Assuntos
Anuloplastia da Valva Mitral/instrumentação , Contração Miocárdica , Próteses e Implantes , Animais , Fenômenos Biomecânicos , Força Compressiva , Marcadores Fiduciais , Hemodinâmica , Masculino , Desenho de Prótese , Valores de Referência , Ovinos , Resistência à Tração
17.
J Mech Phys Solids ; 61(9): 1955-1969, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23976792

RESUMO

Understanding the difference between ex vivo and in vivo measurements is critical to interpret the load carrying mechanisms of living biological systems. For the past four decades, the ex vivo stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with remarkably consistent stiffness parameters, even across different species. Recently, the in vivo stiffness was characterized using combined imaging techniques and inverse finite element analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics through the multiplicative decomposition of the total elastic deformation into prestrain-induced and load-induced parts. Using in vivo measured membrane kinematics and associated pressure recordings, we perform an inverse finite element analysis for different prestrain levels and show that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin biological membranes in vivo into their optimal operating range, right at the transition point of the stiffening regime. Understanding the effect of prestrain has direct clinical implications in regenerative medicine, medical device design, and and tissue engineering of replacement constructs for thin biological membranes.

18.
Biomech Model Mechanobiol ; 22(1): 57-70, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36229697

RESUMO

Identifying the constitutive parameters of soft materials often requires heterogeneous mechanical test modes, such as simple shear. In turn, interpreting the resulting complex deformations necessitates the use of inverse strategies that iteratively call forward finite element solutions. In the past, we have found that the cost of repeatedly solving non-trivial boundary value problems can be prohibitively expensive. In this current work, we leverage our prior experimentally derived mechanical test data to explore an alternative approach. Specifically, we investigate whether a machine learning-based approach can accelerate the process of identifying material parameters based on our mechanical test data. Toward this end, we pursue two different strategies. In the first strategy, we replace the forward finite element simulations within an iterative optimization framework with a machine learning-based metamodel. Here, we explore both Gaussian process regression and neural network metamodels. In the second strategy, we forgo the iterative optimization framework and use a stand alone neural network to predict the entire material parameter set directly from experimental results. We first evaluate both approaches with simple shear experiments on blood clot, an isotropic, homogeneous material. Next, we evaluate both approaches against simple shear and uniaxial loading experiments on right ventricular myocardium, an anisotropic, heterogeneous material. We find that replacing the forward finite element simulations with metamodels significantly accelerates the parameter identification process with excellent results in the case of blood clot, and with satisfying results in the case of right ventricular myocardium. On the other hand, we find that replacing the entire optimization framework with a neural network yielded unsatisfying results, especially for right ventricular myocardium. Overall, the importance of our work stems from providing a baseline example showing how machine learning can accelerate the process of material parameter identification for soft materials from complex mechanical data, and from providing an open access experimental and simulation dataset that may serve as a benchmark dataset for others interested in applying machine learning techniques to soft tissue biomechanics.


Assuntos
Miocárdio , Trombose , Humanos , Redes Neurais de Computação , Aprendizado de Máquina , Testes Mecânicos , Análise de Elementos Finitos , Estresse Mecânico
19.
Res Sq ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546861

RESUMO

The skin is the largest organ in the human body and serves various functions, including mechanical protection and mechanosensation. Yet, even though skin's biomechanics are attributed to two main layers - epidermis and dermis-computational models have often treated this tissue as a thin homogeneous material or, when considering multiple layers, have ignored the most prominent heterogeneities of skin seen at the mesoscale. Here we create finite element models of representative volume elements (RVEs) of skin, including the three-dimensional variation of the interface between the epidermis and dermis as well as considering the presence of hair follicles. The sinusoidal interface, which approximates the anatomical features known as Rete ridges, does not affect the homogenized mechanical response of the RVE but contributes to stress concentration, particularly at the valleys of the Rete ridges. The stress profile is three-dimensional due to the skin's anisotropy, leading to high-stress bands connecting the valleys of the Rete ridges through one type of saddle point. The peaks of the Rete ridges and the other class of saddle points of the sinusoidal surface form a second set of low-stress bands under equi-biaxial loading. Another prominent feature of the heterogeneous stress pattern is a switch in the stress jump across the interface, which becomes lower with respect to the flat interface at increasing deformations. These features are seen in both tension and shear loading. The RVE with the hair follicle showed strains concentrating at the epidermis adjacent to the hair follicle, the epithelial tissue surrounding the hair right below the epidermis, and the bulb or base region of the hair follicle. The regions of strain concentration near the hair follicle in equi-biaxial and shear loading align with the presence of distinct mechanoreceptors in the skin, except for the bulb or base region. This study highlights the importance of skin heterogeneities, particularly its potential mechanophysiological role in the sense of touch and the prevention of skin delamination.

20.
J Mech Behav Biomed Mater ; 143: 105901, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207527

RESUMO

Measuring and understanding the mechanical properties of blood clots can provide insights into disease progression and the effectiveness of potential treatments. However, several limitations hinder the use of standard mechanical testing methods to measure the response of soft biological tissues, like blood clots. These tissues can be difficult to mount, and are inhomogeneous, irregular in shape, scarce, and valuable. To remedy this, we employ in this work Volume Controlled Cavity Expansion (VCCE), a technique that was recently developed, to measure local mechanical properties of soft materials in their natural environment. Through highly controlled volume expansion of a water bubble at the tip of an injection needle, paired with simultaneous measurement of the resisting pressure, we obtain a local signature of whole blood clot mechanical response. Comparing this data with predictive theoretical models, we find that a 1-term Ogden model is sufficient to capture the nonlinear elastic response observed in our experiments and produces shear modulus values that are comparable to values reported in the literature. Moreover, we find that bovine whole blood stored at 4 °C for greater than 2 days exhibits a statistically significant shift in the shear modulus from 2.53 ± 0.44 kPa on day 2 (N = 13) to 1.23 ± 0.18 kPa on day 3 (N = 14). In contrast to previously reported results, our samples did not exhibit viscoelastic rate sensitivity within strain rates ranging from 0.22 - 21.1 s-1. By surveying existing data on whole blood clots for comparison, we show that this technique provides highly repeatable and reliable results, hence we propose the more widespread adoption of VCCE as a path forward to building a better understanding of the mechanics of soft biological materials.


Assuntos
Coagulação Sanguínea , Trombose , Animais , Bovinos , Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA