Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(50): 15714-15728, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472987

RESUMO

Surfactants with their intrinsic ability to solubilize lipid membranes are widely used as antibacterial agents, and their interactions with the bacterial cell envelope are complicated by their differential aggregation tendencies. We present a combined experimental and molecular dynamics investigation to unravel the molecular basis for the superior antimicrobial activity and faster kill kinetics of shorter-chain fatty acid surfactant, laurate, when compared with the longer-chain surfactants studied in contact time assays with live Escherichia coli (E. coli). From all-atom molecular dynamics simulations, translocation events across peptidoglycan were the highest for laurate followed by sodium dodecyl sulfate, myristate, palmitate, oleate, and stearate. The translocation kinetics were positively correlated with the critical micellar concentration, which determined the free monomer surfactant concentration available for translocation across peptidoglycan. Interestingly, aggregates showed a lower propensity to translocate across the peptidoglycan layer and longer translocation times were observed for oleate, thereby revealing an intrinsic sieving property of the bacterial cell wall. Molecular dynamics simulations with surfactant-incorporated bacterial inner membranes revealed the greatest hydrophobic mismatch and membrane thinning in the presence of laurate when compared with the other surfactants. The enhanced antimicrobial efficacy of laurate over oleate was further verified by experiments with giant unilamellar vesicles, and electroporation molecular dynamics simulations revealed greater inner membrane poration tendency in the presence of laurate when compared with the longer-chain surfactants. Our study provides molecular insights into surfactant translocation across peptidoglycan and chain length-induced structural disruption of the inner membrane, which correlate with contact time kill efficacies observed as a function of chain length with E. coli. The insights gained from our study uncover unexplored barrier properties of the bacterial cell envelope to rationalize the development of antimicrobial formulations and therapeutics.


Assuntos
Anti-Infecciosos , Tensoativos , Tensoativos/química , Escherichia coli , Ácido Oleico , Peptidoglicano/metabolismo , Lauratos , Parede Celular
2.
Langmuir ; 36(30): 8800-8814, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32609530

RESUMO

The bacterial cell envelope is a complex multilayered structure evolved to protect bacteria in hostile environments. An understanding of the molecular basis for the interaction and transport of antibacterial therapeutics with the bacterial cell envelope will enable the development of drug molecules to combat bacterial infections and suppress the emergence of drug-resistant strains. Here we report the successful creation of an in vitro supported lipid bilayer (SLB) platform of the outer membrane (OM) of E. coli, an archetypical Gram-negative bacterium, containing the full smooth lipopolysaccharide (S-LPS) architecture of the membrane. Using this platform, we performed fluorescence correlation spectroscopy (FCS) in combination with molecular dynamics (MD) simulations to measure lipid diffusivities and provide molecular insights into the transport of natural antimicrobial agent thymol. Lipid diffusivities measured on symmetric supported lipid bilayers made up of inner membrane lipids show a distinct increase in the presence of thymol as also corroborated by MD simulations. However, lipid diffusivities in the asymmetric OM consisting of only S-LPS are invariant upon exposure to thymol. Increasing the phospholipid content in the LPS-containing outer leaflet improved the penetration toward thymol as reflected in slightly higher relative diffusivity changes in the inner leaflet when compared with the outer leaflet. Free-energy computations reveal the presence of a barrier (∼6 kT) only in the core-saccharide region of the OM for the translocation of thymol while the external O-antigen part is easily traversed. In contrast, thymol spontaneously inserts into the inner membrane. In addition to providing leaflet-resolved penetration barriers in bacterial membranes, we also assess the ability of small molecules to penetrate various membrane components. With rising bacterial resistance, our study opens up the possibility of screening potential antimicrobial drug candidates using these realistic model platforms for Gram-negative bacteria.


Assuntos
Escherichia coli , Timol , Antibacterianos , Bactérias , Membrana Celular , Bicamadas Lipídicas , Lipopolissacarídeos
3.
Langmuir ; 25(9): 4829-34, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19334721

RESUMO

We report novel observations revealing the catastrophic breakup of water drops containing surfactant molecules, which are suspended in oil and subjected to an electric field of strength approximately 10(5) V/m. The observed breakup was distinctly different from the gradual end pinch-off or tip-streaming modes reported earlier in the literature. There was no observable characteristic deformation of the drop prior to breakup. The time scales involved in the breakup and the resultant droplet sizes were much smaller in the phenomenon observed by us. We hypothesize that this mode of drop breakup is obtained by the combined effect of an external electric field that imposes tensile stresses on the surface of the drop, and characteristic stress-strain behavior for tensile deformation exhibited by the liquid drop in the presence of a suitable surfactant, which not only lowers the interfacial tension (and hence the cohesive strength) of the drop but also simultaneously renders the interface nonductile or brittle at high enough concentration. We have identified the relevant thermodynamic parameter, viz., the sum of interfacial tension, sigma, and the Gibbs elasticity, epsilon, which plays a decisive role in determining the mode of drop breakup. The parameter (epsilon + sigma) represents the internal restoration stress of a liquid drop opposing rapid, short-time-scale perturbations or local deformations in the drop shape under the influence of external impulses or stresses. A thermodynamic "state" diagram of (epsilon + sigma) versus interfacial area per surfactant molecule adsorbed at the drop interface shows a "maximum" at a critical transition concentration (ctc). Below this concentration of the surfactant, the drop undergoes tip streaming or pinch off. Above this concentration, the drop may undergo catastrophic disintegration if the external stress is high enough to overcome the ultimate cohesive strength of the drop's interface.

4.
Langmuir ; 21(2): 516-9, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15641816

RESUMO

We report spontaneous supra-assembly of fibrous surfactant crystallites at the air-solution interface resulting in spectacular arrays of two-dimensional spiral and three-dimensional "micro-pottery"-like superstructures. Surface pressure differential driven bending of the embryonic fiber nuclei and Marangoni convection driven fiber migration/alignment appear to be the causal factors behind this phenomenon. The assemblies form at specific crystal-growth velocities dictated by the relative time scales for fiber bending/alignment and their rigidification/immobilization as they grow. Although our studies are restricted to a specific class of amphiphiles, namely, alkaline metal salts of linear fatty acids, the phenomenon should be generic to amphiphilic molecules that crystallize into flexible fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA