Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(7): 1205-1211, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399501

RESUMO

We present the first in vivo comparative evaluation of chemically defined antibody-drug conjugates (ADCs), small molecule-drug conjugates (SMDCs), and peptide-drug conjugates (PDCs) targeting and activated by fibroblast activation protein (FAP) in solid tumors. Both the SMDC (OncoFAP-Gly-Pro-MMAE) and the ADC (7NP2-Gly-Pro-MMAE) candidates delivered high amounts of active payload (i.e., MMAE) selectively at the tumor site, thus producing a potent antitumor activity in a preclinical cancer model.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Fibroblastos , Oligopeptídeos , Peptídeos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Nucl Med ; 65(10): 1604-1610, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39266289

RESUMO

Fibroblast activation protein (FAP) is abundantly expressed in the stroma of most human solid tumors. Clinical-stage radiolabeled FAP ligands are increasingly used as tools for the detection of various cancer lesions. To unleash the full therapeutic potential of FAP-targeting agents, ligands need to remain at the tumor site for several days after administration. We recently described the discovery of OncoFAP, a high-affinity small organic ligand of FAP with a rapid accumulation in tumors and low uptake in healthy tissues in cancer patients. Trimerization of OncoFAP provided a derivative (named TriOncoFAP, or OncoFAP-23) with improved FAP affinity. In this work, we evaluated the tissue biodistribution profile and the therapeutic performance of OncoFAP-23 in tumor-bearing mice. Methods: OncoFAP-23 was radiolabeled with the theranostic radionuclide 177Lu. Preclinical experiments were conducted on mice bearing SK-RC-52.hFAP (BALB/c nude mice) or CT-26.hFAP (BALB/c mice) tumors. 177Lu-OncoFAP and 177Lu-FAP-2286 were included in the biodistribution study as controls. Toxicologic evaluation was performed on Wistar rats and CD1 mice by injecting high doses of OncoFAP-23 or its cold-labeled counterpart, respectively. Results: 177Lu-OncoFAP-23 emerged for its best-in-class biodistribution profile, high and prolonged tumor uptake (i.e., ∼16 percentage injected dose/g at 96 h), and low accumulation in healthy organs, which correlates well with its potent single-agent anticancer activity at low levels of administered radioactivity. Combination treatment with the tumor-targeted interleukin 2 (L19-IL2, a clinical-stage immunocytokine) further expands the therapeutic window of 177Lu-OncoFAP-23 by potentiating its in vivo antitumor activity. Proteomics studies revealed a potent tumor-directed immune response on treatment with the combination. OncoFAP-23 and natLu-OncoFAP-23 exhibited a favorable toxicologic profile, without showing any side effects or signs of toxicity. Conclusion: OncoFAP-23 presents enhanced tumor uptake and tumor retention and low accumulation in healthy organs, findings that correspond to a strongly improved in vivo antitumor efficacy. The data presented in this work support the clinical development of 177Lu-OncoFAP-23 for the treatment of FAP-positive solid tumors.


Assuntos
Endopeptidases , Gelatinases , Lutécio , Proteínas de Membrana , Radioisótopos , Compostos Radiofarmacêuticos , Animais , Camundongos , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Lutécio/uso terapêutico , Ratos , Humanos , Distribuição Tecidual , Radioisótopos/uso terapêutico , Radioisótopos/química , Linhagem Celular Tumoral , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Feminino , Camundongos Endogâmicos BALB C
3.
EMBO Mol Med ; 16(4): 904-926, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448543

RESUMO

Cytokine-based therapeutics have been shown to mediate objective responses in certain tumor entities but suffer from insufficient selectivity, causing limiting toxicity which prevents dose escalation to therapeutically active regimens. The antibody-based delivery of cytokines significantly increases the therapeutic index of the corresponding payload but still suffers from side effects associated with peak concentrations of the product in blood upon intravenous administration. Here we devise a general strategy (named "Intra-Cork") to mask systemic cytokine activity without impacting anti-cancer efficacy. Our technology features the use of antibody-cytokine fusions, capable of selective localization at the neoplastic site, in combination with pathway-selective inhibitors of the cytokine signaling, which rapidly clear from the body. This strategy, exemplified with a tumor-targeted IL12 in combination with a JAK2 inhibitor, allowed to abrogate cytokine-driven toxicity without affecting therapeutic activity in a preclinical model of cancer. This approach is readily applicable in clinical practice.


Assuntos
Citocinas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Imunoterapia
4.
J Immunother Cancer ; 12(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142716

RESUMO

BACKGROUND: Anti-PD-1 antibodies have revolutionized cancer immunotherapy due to their ability to induce long-lasting complete remissions in a proportion of patients. Current research efforts are attempting to identify biomarkers and suitable combination partners to predict or further improve the activity of immune checkpoint inhibitors. Antibody-cytokine fusions are a class of pharmaceuticals that showed the potential to boost the anticancer properties of other immunotherapies. Extradomain A-fibronectin (EDA-FN), which is expressed in most solid and hematological tumors but is virtually undetectable in healthy adult tissues, is an attractive target for the delivery of cytokine at the site of the disease. METHODS: In this work, we describe the generation and characterization of a novel interleukin-7-based fusion protein targeting EDA-FN termed F8(scDb)-IL7. The product consists of the F8 antibody specific to the alternatively spliced EDA of FN in the single-chain diabody (scDb) format fused to human IL-7. RESULTS: F8(scDb)-IL7 efficiently stimulates human peripheral blood mononuclear cells in vitro. Moreover, the product significantly increases the expression of T Cell Factor 1 (TCF-1) on CD8+T cells compared with an IL2-fusion protein. TCF-1 has emerged as a pivotal transcription factor that influences the durability and potency of immune responses against tumors. In preclinical cancer models, F8(scDb)-IL7 demonstrates potent single-agent activity and eradicates sarcoma lesions when combined with anti-PD-1. CONCLUSIONS: Our results provide the rationale to explore the combination of F8(scDb)-IL7 with anti-PD-1 antibodies for the treatment of patients with cancer.


Assuntos
Linfócitos T CD8-Positivos , Fibronectinas , Interleucina-7 , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-7/metabolismo , Interleucina-7/farmacologia , Animais , Camundongos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Regulação para Cima , Feminino , Linhagem Celular Tumoral
5.
Front Pharmacol ; 14: 1320524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125888

RESUMO

Immune-stimulating antibody conjugates (ISACs) equipped with imidazoquinoline (IMD) payloads can stimulate endogenous immune cells to kill cancer cells, ultimately inducing long-lasting anticancer effects. A novel ISAC was designed, featuring the IMD Resiquimod (R848), a tumor-targeting antibody specific for Carbonic Anhydrase IX (CAIX) and the protease-cleavable Val-Cit-PABC linker. In vitro stability analysis showed not only R848 release in the presence of the protease Cathepsin B but also under acidic conditions. The ex vivo mass spectrometry-based biodistribution data confirmed the low stability of the linker-drug connection while highlighting the selective accumulation of the IgG in tumors and its long circulatory half-life.

6.
Sci Transl Med ; 15(697): eadf2281, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224228

RESUMO

Glioblastoma is the most aggressive primary brain tumor with an unmet need for more effective therapies. Here, we investigated combination therapies based on L19TNF, an antibody-cytokine fusion protein based on tumor necrosis factor that selectively localizes to cancer neovasculature. Using immunocompetent orthotopic glioma mouse models, we identified strong anti-glioma activity of L19TNF in combination with the alkylating agent CCNU, which cured the majority of tumor-bearing mice, whereas monotherapies only had limited efficacy. In situ and ex vivo immunophenotypic and molecular profiling in the mouse models revealed that L19TNF and CCNU induced tumor DNA damage and treatment-associated tumor necrosis. In addition, this combination also up-regulated tumor endothelial cell adhesion molecules, promoted the infiltration of immune cells into the tumor, induced immunostimulatory pathways, and decreased immunosuppression pathways. MHC immunopeptidomics demonstrated that L19TNF and CCNU increased antigen presentation on MHC class I molecules. The antitumor activity was T cell dependent and completely abrogated in immunodeficient mouse models. On the basis of these encouraging results, we translated this treatment combination to patients with glioblastoma. The clinical translation is ongoing but already shows objective responses in three of five patients in the first recurrent glioblastoma patient cohort treated with L19TNF in combination with CCNU (NCT04573192).


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Linfócitos T , Recidiva Local de Neoplasia , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Lomustina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA