RESUMO
Small heteroaryl-diyne (Het-DY) tags with distinct vibrational frequencies, and physiologically relevant cLog P were designed for multiplexed bioorthogonal Raman imaging. Pd-Cu catalyzed coupling, combined with the use of Lei ligand, was shown to improve overall yields of the desired heterocoupled Het-DY tags, minimizing the production of homocoupled side-products. Spectral data were in agreement with the trends predicted by DFT calculations and systematic introduction of electron- rich/poor rings stretched the frequency limit of aryl-capped diynes (2209-2243â cm-1 ). The improved Log P of these Het-DY tags was evident from their diffuse distribution in cellular uptake studies and functionalizing tags with organelle markers allowed the acquisition of location-specific biological images. LC-MS- and NMR-based assays showed that some heteroaryl-capped internal alkynes are potential nucleophile traps with structure-dependent reactivity. These biocompatible Het-DY tags, equipped with covalent reactivity, open up new avenues for Raman bioorthogonal imaging.
RESUMO
Stimulated Raman histopathology (SRH) utilises the intrinsic vibrational properties of lipids, proteins and nucleic acids to generate contrast providing rapid image acquisition that allows visualisation of histopathological features. It is currently being trialled in the intraoperative setting, where the ability to image unprocessed samples rapidly and with high resolution offers several potential advantages over the use of conventional haematoxylin and eosin stained images. Here we review recent advances in the field including new updates in instrumentation and computer aided diagnosis. We also discuss how other non-linear modalities can be used to provide additional diagnostic contrast which together pave the way for enhanced histopathology and open up possibilities for in vivo pathology.
Assuntos
Ácidos Nucleicos , Análise Espectral Raman , Amarelo de Eosina-(YS) , Hematoxilina , VibraçãoRESUMO
Isonitriles are delicately poised chemical entities capable of being coaxed to react as nucleophiles or electrophiles. Directing this tunable reactivity with metal and non-metal catalysts provides rapid access to a large array of complex nitrogenous structures ideally functionalized for medicinal applications. Isonitrile insertion into transition metal complexes has featured in numerous synthetic and mechanistic studies, leading to rapid deployment of isonitriles in numerous catalytic processes, including multicomponent reactions (MCR). Covering the literature from 1990-2014, the present review collates reaction types to highlight reactivity trends and allow catalyst comparison.
RESUMO
Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.
RESUMO
Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRß is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRß-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.
Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias Ovarianas , Animais , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Pirimidinas/metabolismo , Microambiente TumoralRESUMO
Novel fluorinated 2-amino-4-oxo-6-substituted pyrrolo[2,3- d]pyrimidine analogues 7-12 were synthesized and tested for selective cellular uptake by folate receptors (FRs) α and ß or the proton-coupled folate transporter (PCFT) and for antitumor efficacy. Compounds 8, 9, 11, and 12 showed increased in vitro antiproliferative activities (â¼11-fold) over the nonfluorinated analogues 2, 3, 5, and 6 toward engineered Chinese hamster ovary and HeLa cells expressing FRs or PCFT. Compounds 8, 9, 11, and 12 also inhibited proliferation of IGROV1 and A2780 epithelial ovarian cancer cells; in IGROV1 cells with knockdown of FRα, 9, 11, and 12 showed sustained inhibition associated with uptake by PCFT. All compounds inhibited glycinamide ribonucleotide formyltransferase, a key enzyme in the de novo purine biosynthesis pathway. Molecular modeling studies validated in vitro cell-based results. NMR evidence supports the presence of an intramolecular fluorine-hydrogen bond. Potent in vivo efficacy of 11 was established with IGROV1 xenografts in severe compromised immunodeficient mice.
Assuntos
Flúor/química , Receptor 1 de Folato/metabolismo , Transportador de Folato Acoplado a Próton/metabolismo , Nucleotídeos de Purina/biossíntese , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Transporte Biológico , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ácido Fólico/metabolismo , Humanos , Camundongos , Pirimidinas/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Tumor-targeted specificities of 6-substituted pyrrolo[2,3- d]pyrimidine analogues of 1, where the phenyl side-chain is replaced by 3',6' (5, 8), 2',5' (6, 9), and 2',6' (7, 10) pyridyls, were analyzed. Proliferation inhibition of isogenic Chinese hamster ovary (CHO) cells expressing folate receptors (FRs) α and ß were in rank order, 6 > 9 > 5 > 7 > 8, with 10 showing no activity, and 6 > 9 > 5 > 8, with 10 and 7 being inactive, respectively. Antiproliferative effects toward FRα- and FRß-expressing cells were reflected in competitive binding with [3H]folic acid. Only compound 6 was active against proton-coupled folate receptor (PCFT)-expressing CHO cells (â¼4-fold more potent than 1) and inhibited [3H]methotrexate uptake by PCFT. In KB and IGROV1 tumor cells, 6 showed <1 nM IC50, â¼2-3-fold more potent than 1. Compound 6 inhibited glycinamide ribonucleotide formyltransferase in de novo purine biosynthesis and showed potent in vivo efficacy toward subcutaneous IGROV1 tumor xenografts in SCID mice.
Assuntos
Antineoplásicos/síntese química , Antagonistas do Ácido Fólico/síntese química , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetulus , Receptor 1 de Folato/análise , Receptor 1 de Folato/metabolismo , Receptor 2 de Folato/análise , Antagonistas do Ácido Fólico/farmacologia , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Transportador de Folato Acoplado a Próton/metabolismo , Nucleotídeos de Purina/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacocinética , Pirróis/química , Pirróis/farmacocinéticaRESUMO
We synthesized 5-substituted pyrrolo[2,3-d]pyrimidine antifolates (compounds 5-10) with one-to-six bridge carbons and a benozyl ring in the side chain as antitumor agents. Compound 8 with a 4-carbon bridge was the most active analogue and potently inhibited proliferation of folate receptor (FR) α-expressing Chinese hamster ovary and KB human tumor cells. Growth inhibition was reversed completely or in part by excess folic acid, indicating that FRα is involved in cellular uptake, and resulted in S-phase accumulation and apoptosis. Antiproliferative effects of compound 8 toward KB cells were protected by excess adenosine but not thymidine, establishing de novo purine nucleotide biosynthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both AICA ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase). Inhibition of GARFTase and AICARFTase by compound 8 was confirmed by cellular metabolic assays and resulted in ATP pool depletion. To our knowledge, this is the first example of an antifolate that acts as a dual inhibitor of GARFTase and AICARFTase as its principal mechanism of action.