RESUMO
The evolution of the electronic health record, combined with advances in data curation and analytic technologies, increasingly enables data sharing and harmonization. Advances in the analysis of health-related and health-proxy information have already accelerated research discoveries and improved patient care. This American Heart Association policy statement discusses how broad data sharing can be an enabling driver of progress by providing data to develop, test, and benchmark innovative methods, scalable insights, and potential new paradigms for data storage and workflow. Along with these advances come concerns about the sensitive nature of some health data, equity considerations about the involvement of historically excluded communities, and the complex intersection of laws attempting to govern behavior. Data-sharing principles are therefore necessary across a wide swath of entities, including parties who collect health information, funders, researchers, patients, legislatures, commercial companies, and regulatory departments and agencies. This policy statement outlines some of the key equity and legal background relevant to health data sharing and responsible management. It then articulates principles that will guide the American Heart Association's engagement in public policy related to data collection, sharing, and use to continue to inform its work across the research enterprise, as well as specific examples of how these principles might be applied in the policy landscape. The goal of these principles is to improve policy to support the use or reuse of health information in ways that are respectful of patients and research participants, equitable in impact in terms of both risks and potential benefits, and beneficial across broad and demographically diverse communities in the United States.
Assuntos
American Heart Association , Disseminação de Informação , Humanos , Estados Unidos , Coleta de DadosRESUMO
The proliferation of fake news across multiple modalities has emerged as a critical challenge in the modern information landscape, necessitating advanced detection methods. This study proposes a comprehensive framework for fake news detection integrating text, images, and videos using machine learning and deep learning techniques. The research employs a dual-phased methodology, first analyzing textual data using various classifiers, then developing a multimodal approach combining BERT for text analysis and a modified CNN for visual data. Experiments on the ISOT fake news dataset and MediaEval 2016 image verification corpus demonstrate the effectiveness of the proposed models. For textual data, the Random Forest classifier achieved 99% accuracy, outperforming other algorithms. The multimodal approach showed superior performance compared to baseline models, with a 3.1% accuracy improvement over existing multimodal techniques. This research contributes to the ongoing efforts to combat misinformation by providing a robust, adaptable framework for detecting fake news across different media formats, addressing the complexities of modern information dissemination and manipulation.
RESUMO
This paper presents the findings of detailed and comprehensive technical literature aimed at identifying the current and future research challenges of tactical autonomy. It discusses in great detail the current state-of-the-art powerful artificial intelligence (AI), machine learning (ML), and robot technologies, and their potential for developing safe and robust autonomous systems in the context of future military and defense applications. Additionally, we discuss some of the technical and operational critical challenges that arise when attempting to practically build fully autonomous systems for advanced military and defense applications. Our paper provides the state-of-the-art advanced AI methods available for tactical autonomy. To the best of our knowledge, this is the first work that addresses the important current trends, strategies, critical challenges, tactical complexities, and future research directions of tactical autonomy. We believe this work will greatly interest researchers and scientists from academia and the industry working in the field of robotics and the autonomous systems community. We hope this work encourages researchers across multiple disciplines of AI to explore the broader tactical autonomy domain. We also hope that our work serves as an essential step toward designing advanced AI and ML models with practical implications for real-world military and defense settings.
Assuntos
Médicos , Robótica , Humanos , Inteligência Artificial , Aprendizado de Máquina , PrevisõesRESUMO
Generative adversarial network (GAN) has been regarded as a promising solution to many machine learning problems, and it comprises of a generator and discriminator, determining patterns and anomalies in the input data. However, GANs have several common failure modes. Typically, a mode collapse occurs when a GAN fails to fit the set optimizations and leads to several instabilities in the generative model, diminishing the capability to generate new content regardless of the dataset. In this paper, we study conditional limiter solutions for mode collapse for the Intrusion Detection System (IDS) Control Flow GAN (ICF-GAN) model. Specifically, the ICF-GAN's mode collapse instances are limited by a mini-batch method that significantly improves the model accuracy. Performance evaluation is conducted using numerical results obtained from experiments.
Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Aprendizado de Máquina , Projetos de PesquisaRESUMO
Machine learning (ML) has been emerging as a viable solution for intrusion detection systems (IDS) to secure IoT devices against different types of attacks. ML based IDS (ML-IDS) normally detect network traffic anomalies caused by known attacks as well as newly introduced attacks. Recent research focuses on the functionality metrics of ML techniques, depicting their prediction effectiveness, but overlooked their operational requirements. ML techniques are resource-demanding that require careful adaptation to fit the limited computing resources of a large sector of their operational platform, namely, embedded systems. In this paper, we propose cloud-based service architecture for managing ML models that best fit different IoT device operational configurations for security. An IoT device may benefit from such a service by offloading to the cloud heavy-weight activities such as feature selection, model building, training, and validation, thus reducing its IDS maintenance workload at the IoT device and get the security model back from the cloud as a service.
RESUMO
Internet and telecom service providers worldwide are facing financial sustainability issues in migrating their existing legacy IPv4 networking system due to backward compatibility issues with the latest generation networking paradigms viz. Internet protocol version 6 (IPv6) and software-defined networking (SDN). Bench marking of existing networking devices is required to identify their status whether the existing running devices are upgradable or need replacement to make them operable with SDN and IPv6 networking so that internet and telecom service providers can properly plan their network migration to optimize capital and operational expenditures for future sustainability. In this paper, we implement "adaptive neuro fuzzy inference system (ANFIS)", a well-known intelligent approach for network device status identification to classify whether a network device is upgradable or requires replacement. Similarly, we establish a knowledge base (KB) system to store the information of device internetwork operating system (IoS)/firmware version, its SDN, and IPv6 support with end-of-life and end-of-support. For input to ANFIS, device performance metrics such as average CPU utilization, throughput, and memory capacity are retrieved and mapped with data from KB. We run the experiment with other well-known classification methods, for example, support vector machine (SVM), fine tree, and liner regression to compare performance results with ANFIS. The comparative results show that the ANFIS-based classification approach is more accurate and optimal than other methods. For service providers with a large number of network devices, this approach assists them to properly classify the device and make a decision for the smooth transitioning to SDN-enabled IPv6 networks.
Assuntos
Algoritmos , Redes de Comunicação de Computadores , Internet , SoftwareRESUMO
In this study, the numerical computation heuristic of the environmental and economic system using the artificial neural networks (ANNs) structure together with the capabilities of the heuristic global search genetic algorithm (GA) and the quick local search interior-point algorithm (IPA), i.e., ANN-GA-IPA. The environmental and economic system is dependent of three categories, execution cost of control standards and new technical diagnostics elimination costs of emergencies values and the competence of the system of industrial elements. These three elements form a nonlinear differential environmental and economic system. The optimization of an error-based objective function is performed using the differential environmental and economic system and its initial conditions. The optimization of an error-based objective function is performed using the differential environmental and economic system and its initial conditions.
Assuntos
Heurística , Redes Neurais de Computação , AlgoritmosRESUMO
Finding an optimal solution for emerging cyber physical systems (CPS) for better efficiency and robustness is one of the major issues. Meta-heuristic is emerging as a promising field of study for solving various optimization problems applicable to different CPS systems. In this paper, we propose a new meta-heuristic algorithm based on Multiverse Theory, named MVA, that can solve NP-hard optimization problems such as non-linear and multi-level programming problems as well as applied optimization problems for CPS systems. MVA algorithm inspires the creation of the next population to be very close to the solution of initial population, which mimics the nature of parallel worlds in multiverse theory. Additionally, MVA distributes the solutions in the feasible region similarly to the nature of big bangs. To illustrate the effectiveness of the proposed algorithm, a set of test problems is implemented and measured in terms of feasibility, efficiency of their solutions and the number of iterations taken in finding the optimum solution. Numerical results obtained from extensive simulations have shown that the proposed algorithm outperforms the state-of-the-art approaches while solving the optimization problems with large feasible regions.
RESUMO
Game theory has emerged as a new mathematical tool in the analysis and design of wireless communication systems, being particularly useful in studying the interactions among adaptive transmitters that attempt to achieve specific objectives without cooperation. In this paper, we present a game-theoretic approach to the problem of joint transmitter adaptation and power control in wireless systems, where users' transmissions are subject to quality-of-service requirements specified in terms of target signal-to-interference-plus-noise ratios (SINRs) and nonideal vector channels between transmitters and receivers are explicitly considered. Our approach is based on application of separable games, which are a specific class of noncooperative games where the players' cost is a separable function of their strategic choices. We formally state a joint codeword and power adaptation game, which is separable, and we study its properties in terms of its subgames, namely, the codeword adaptation subgame and the power adaptation subgame. We investigate the necessary conditions for an optimal Nash equilibrium and show that this corresponds to an ensemble of user codewords and powers, which maximizes the sum capacity of the corresponding multiaccess vector channel model, and for which the specified target SINRs are achieved with minimum transmitted power.