Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurophysiol ; 127(4): 819-828, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235439

RESUMO

Successful human behavior relies on the ability to flexibly alter movements depending on the context in which they are made. One such context-dependent modulation is proactive inhibition, a type of behavioral inhibition used when anticipating the need to stop or change movements. We investigated how the motor cortex might prepare and execute movements made under different contexts. We used transcranial magnetic stimulation (TMS) in different coil orientations [postero-anterior (PA) and antero-posterior (AP) flowing currents] and pulse widths (120 and 30 µs) to probe the excitability of different inputs to corticospinal neurons while participants performed two reaction time tasks: a simple reaction time task and a stop-signal task requiring proactive inhibition. We took inspiration from state space models to assess whether the pattern of motor cortex activity changed due to proactive inhibition (PA and AP neuronal circuits represent the x and y axes of a state space upon which motor cortex activity unfolds during motor preparation and execution). We found that the rise in motor cortex excitability was delayed when proactive inhibition was required. State space visualizations showed altered patterns of motor cortex activity (combined PA120 and AP30 activity) during proactive inhibition, despite adjusting for reaction time. Overall, we show that the pattern of neural activity generated by the motor cortex during movement preparation and execution is dependent upon the context under which the movement is to be made.NEW & NOTEWORTHY Using directional TMS, we find that the human motor cortex flexibly changes its pattern of neural activity depending on the context in which a movement is due to be made. Interestingly, this occurs despite adjusting for reaction time. We also show that state space and dynamical systems models of movement can be noninvasively visualized in humans using TMS, thereby offering a novel method to study these powerful models in humans.


Assuntos
Córtex Motor , Eletromiografia , Potencial Evocado Motor/fisiologia , Humanos , Córtex Motor/fisiologia , Movimento/fisiologia , Inibição Proativa , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana/métodos
2.
Brain ; 144(6): 1799-1818, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33704439

RESUMO

We propose a computational neurology of movement based on the convergence of theoretical neurobiology and clinical neurology. A significant development in the former is the idea that we can frame brain function as a process of (active) inference, in which the nervous system makes predictions about its sensory data. These predictions depend upon an implicit predictive (generative) model used by the brain. This means neural dynamics can be framed as generating actions to ensure sensations are consistent with these predictions-and adjusting predictions when they are not. We illustrate the significance of this formulation for clinical neurology by simulating a clinical examination of the motor system using an upper limb coordination task. Specifically, we show how tendon reflexes emerge naturally under the right kind of generative model. Through simulated perturbations, pertaining to prior probabilities of this model's variables, we illustrate the emergence of hyperreflexia and pendular reflexes, reminiscent of neurological lesions in the corticospinal tract and cerebellum. We then turn to the computational lesions causing hypokinesia and deficits of coordination. This in silico lesion-deficit analysis provides an opportunity to revisit classic neurological dichotomies (e.g. pyramidal versus extrapyramidal systems) from the perspective of modern approaches to theoretical neurobiology-and our understanding of the neurocomputational architecture of movement control based on first principles.


Assuntos
Encéfalo/fisiologia , Simulação por Computador , Modelos Neurológicos , Movimento/fisiologia , Neurologia/métodos , Humanos
3.
Muscle Nerve ; 63(5): 724-729, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33533504

RESUMO

INTRODUCTION: Transcranial magnetic stimulation (TMS) is widely used to explore cortical physiology in health and disease. Surface electromyography (sEMG) is appropriate for superficial muscles, but cannot be applied easily to less accessible muscles. Muscle ultrasound (mUS) may provide an elegant solution to this problem, but fundamental questions remain. We explore the relationship between TMS evoked muscle potentials and TMS evoked muscle contractions measured with mUS. METHODS: In 10 participants, we performed a TMS recruitment curve, simultaneously measuring motor evoked potentials (MEPs) and mUS in biceps (BI), first dorsal interosseous (FDI), tibialis anterior (TA), and the tongue (TO). RESULTS: Resting motor threshold (RMT) measurements and recruitment curves were found to be consistent across sEMG and mUS. DISCUSSION: This work supports the use of TMS-US to study less accessible muscles. The implications are broad but could include the study of a new range of muscles in disorders such as amyotrophic lateral sclerosis.


Assuntos
Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Contração Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia , Ultrassonografia/métodos , Estimulação Elétrica , Eletrodos , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
4.
Brain ; 143(3): 906-919, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125364

RESUMO

The defining character of tics is that they can be transiently suppressed by volitional effort of will, and at a behavioural level this has led to the concept that tics result from a failure of inhibition. However, this logic conflates the mechanism responsible for the production of tics with that used in suppressing them. Volitional inhibition of motor output could be increased to prevent the tic from reaching the threshold for expression, although this has been extensively investigated with conflicting results. Alternatively, automatic inhibition could prevent the initial excitation of the striatal tic focus-a hypothesis we have previously introduced. To reconcile these competing hypotheses, we examined different types of motor inhibition in a group of 19 patients with primary tic disorders and 15 healthy volunteers. We probed proactive and reactive inhibition using the conditional stop-signal task, and applied transcranial magnetic stimulation to the motor cortex, to assess movement preparation and execution. We assessed automatic motor inhibition with the masked priming task. We found that volitional movement preparation, execution and inhibition (proactive and reactive) were not impaired in tic disorders. We speculate that these mechanisms are recruited during volitional tic suppression, and that they prevent expression of the tic by inhibiting the nascent excitation released by the tic generator. In contrast, automatic inhibition was abnormal/impaired in patients with tic disorders. In the masked priming task, positive and negative compatibility effects were found for healthy controls, whereas patients with tics exhibited strong positive compatibility effects, but no negative compatibility effect indicative of impaired automatic inhibition. Patients also made more errors on the masked priming task than healthy control subjects and the types of errors were consistent with impaired automatic inhibition. Errors associated with impaired automatic inhibition were positively correlated with tic severity. We conclude that voluntary movement preparation/generation and volitional inhibition are normal in tic disorders, whereas automatic inhibition is impaired-a deficit that correlated with tic severity and thus may constitute a potential mechanism by which tics are generated.


Assuntos
Inibição Psicológica , Córtex Motor/fisiologia , Transtornos de Tique/psicologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Priming de Repetição , Estimulação Magnética Transcraniana , Adulto Jovem
5.
Cochrane Database Syst Rev ; 4: CD010213, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28415140

RESUMO

BACKGROUND: Increasing numbers of incidental pancreatic lesions are being detected each year. Accurate characterisation of pancreatic lesions into benign, precancerous, and cancer masses is crucial in deciding whether to use treatment or surveillance. Distinguishing benign lesions from precancerous and cancerous lesions can prevent patients from undergoing unnecessary major surgery. Despite the importance of accurately classifying pancreatic lesions, there is no clear algorithm for management of focal pancreatic lesions. OBJECTIVES: To determine and compare the diagnostic accuracy of various imaging modalities in detecting cancerous and precancerous lesions in people with focal pancreatic lesions. SEARCH METHODS: We searched the CENTRAL, MEDLINE, Embase, and Science Citation Index until 19 July 2016. We searched the references of included studies to identify further studies. We did not restrict studies based on language or publication status, or whether data were collected prospectively or retrospectively. SELECTION CRITERIA: We planned to include studies reporting cross-sectional information on the index test (CT (computed tomography), MRI (magnetic resonance imaging), PET (positron emission tomography), EUS (endoscopic ultrasound), EUS elastography, and EUS-guided biopsy or FNA (fine-needle aspiration)) and reference standard (confirmation of the nature of the lesion was obtained by histopathological examination of the entire lesion by surgical excision, or histopathological examination for confirmation of precancer or cancer by biopsy and clinical follow-up of at least six months in people with negative index tests) in people with pancreatic lesions irrespective of language or publication status or whether the data were collected prospectively or retrospectively. DATA COLLECTION AND ANALYSIS: Two review authors independently searched the references to identify relevant studies and extracted the data. We planned to use the bivariate analysis to calculate the summary sensitivity and specificity with their 95% confidence intervals and the hierarchical summary receiver operating characteristic (HSROC) to compare the tests and assess heterogeneity, but used simpler models (such as univariate random-effects model and univariate fixed-effect model) for combining studies when appropriate because of the sparse data. We were unable to compare the diagnostic performance of the tests using formal statistical methods because of sparse data. MAIN RESULTS: We included 54 studies involving a total of 3,196 participants evaluating the diagnostic accuracy of various index tests. In these 54 studies, eight different target conditions were identified with different final diagnoses constituting benign, precancerous, and cancerous lesions. None of the studies was of high methodological quality. None of the comparisons in which single studies were included was of sufficiently high methodological quality to warrant highlighting of the results. For differentiation of cancerous lesions from benign or precancerous lesions, we identified only one study per index test. The second analysis, of studies differentiating cancerous versus benign lesions, provided three tests in which meta-analysis could be performed. The sensitivities and specificities for diagnosing cancer were: EUS-FNA: sensitivity 0.79 (95% confidence interval (CI) 0.07 to 1.00), specificity 1.00 (95% CI 0.91 to 1.00); EUS: sensitivity 0.95 (95% CI 0.84 to 0.99), specificity 0.53 (95% CI 0.31 to 0.74); PET: sensitivity 0.92 (95% CI 0.80 to 0.97), specificity 0.65 (95% CI 0.39 to 0.84). The third analysis, of studies differentiating precancerous or cancerous lesions from benign lesions, only provided one test (EUS-FNA) in which meta-analysis was performed. EUS-FNA had moderate sensitivity for diagnosing precancerous or cancerous lesions (sensitivity 0.73 (95% CI 0.01 to 1.00) and high specificity 0.94 (95% CI 0.15 to 1.00), the extremely wide confidence intervals reflecting the heterogeneity between the studies). The fourth analysis, of studies differentiating cancerous (invasive carcinoma) from precancerous (dysplasia) provided three tests in which meta-analysis was performed. The sensitivities and specificities for diagnosing invasive carcinoma were: CT: sensitivity 0.72 (95% CI 0.50 to 0.87), specificity 0.92 (95% CI 0.81 to 0.97); EUS: sensitivity 0.78 (95% CI 0.44 to 0.94), specificity 0.91 (95% CI 0.61 to 0.98); EUS-FNA: sensitivity 0.66 (95% CI 0.03 to 0.99), specificity 0.92 (95% CI 0.73 to 0.98). The fifth analysis, of studies differentiating cancerous (high-grade dysplasia or invasive carcinoma) versus precancerous (low- or intermediate-grade dysplasia) provided six tests in which meta-analysis was performed. The sensitivities and specificities for diagnosing cancer (high-grade dysplasia or invasive carcinoma) were: CT: sensitivity 0.87 (95% CI 0.00 to 1.00), specificity 0.96 (95% CI 0.00 to 1.00); EUS: sensitivity 0.86 (95% CI 0.74 to 0.92), specificity 0.91 (95% CI 0.83 to 0.96); EUS-FNA: sensitivity 0.47 (95% CI 0.24 to 0.70), specificity 0.91 (95% CI 0.32 to 1.00); EUS-FNA carcinoembryonic antigen 200 ng/mL: sensitivity 0.58 (95% CI 0.28 to 0.83), specificity 0.51 (95% CI 0.19 to 0.81); MRI: sensitivity 0.69 (95% CI 0.44 to 0.86), specificity 0.93 (95% CI 0.43 to 1.00); PET: sensitivity 0.90 (95% CI 0.79 to 0.96), specificity 0.94 (95% CI 0.81 to 0.99). The sixth analysis, of studies differentiating cancerous (invasive carcinoma) from precancerous (low-grade dysplasia) provided no tests in which meta-analysis was performed. The seventh analysis, of studies differentiating precancerous or cancerous (intermediate- or high-grade dysplasia or invasive carcinoma) from precancerous (low-grade dysplasia) provided two tests in which meta-analysis was performed. The sensitivity and specificity for diagnosing cancer were: CT: sensitivity 0.83 (95% CI 0.68 to 0.92), specificity 0.83 (95% CI 0.64 to 0.93) and MRI: sensitivity 0.80 (95% CI 0.58 to 0.92), specificity 0.81 (95% CI 0.53 to 0.95), respectively. The eighth analysis, of studies differentiating precancerous or cancerous (intermediate- or high-grade dysplasia or invasive carcinoma) from precancerous (low-grade dysplasia) or benign lesions provided no test in which meta-analysis was performed.There were no major alterations in the subgroup analysis of cystic pancreatic focal lesions (42 studies; 2086 participants). None of the included studies evaluated EUS elastography or sequential testing. AUTHORS' CONCLUSIONS: We were unable to arrive at any firm conclusions because of the differences in the way that study authors classified focal pancreatic lesions into cancerous, precancerous, and benign lesions; the inclusion of few studies with wide confidence intervals for each comparison; poor methodological quality in the studies; and heterogeneity in the estimates within comparisons.


Assuntos
Diagnóstico por Imagem/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Lesões Pré-Cancerosas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Endossonografia , Humanos , Imageamento por Ressonância Magnética , Pancreatopatias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
6.
PLoS One ; 18(1): e0259487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706102

RESUMO

BACKGROUND: A diagnosis of MND takes an average 10-16 months from symptom onset. Early diagnosis is important to access supportive measures to maximise quality of life. The COVID-19 pandemic has caused significant delays in NHS pathways; the majority of GP appointments now occur online with subsequent delays in secondary care assessment. Given the rapid progression of MND, patients may be disproportionately affected resulting in late stage new presentations. We used Monte Carlo simulation to model the pre-COVID-19 diagnostic pathway and then introduced plausible COVID-19 delays. METHODS: The diagnostic pathway was modelled using gamma distributions of time taken: 1) from symptom onset to GP presentation, 2) for specialist referral, and 3) for diagnosis reached after neurology appointment. We incorporated branches to simulate delays: when patients did not attend their GP and when the GP consultation did not result in referral. An emergency presentation was triggered when diagnostic pathway time was within 30 days of projected median survival. Total time-to-diagnosis was calculated over 100,000 iterations. The pre-COVID-19 model was estimated using published data and the Improving MND Care Survey 2019. We estimated COVID-19 delays using published statistics. RESULTS: The pre-COVID model reproduced known features of the MND diagnostic pathway, with a median time to diagnosis of 399 days and predicting 5.2% of MND patients present as undiagnosed emergencies. COVID-19 resulted in diagnostic delays from 558 days when only primary care was 25% delayed, to 915 days when both primary and secondary care were 75%. The model predicted an increase in emergency presentations ranging from 15.4%-44.5%. INTERPRETATIONS: The model suggests the COVID-19 pandemic will result in later-stage diagnoses and more emergency presentations of undiagnosed MND. Late-stage presentations may require rapid escalation to multidisciplinary care. Proactive recognition of acute and late-stage disease with altered service provision will optimise care for people with MND.


Assuntos
COVID-19 , Doença dos Neurônios Motores , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Qualidade de Vida , Doença dos Neurônios Motores/diagnóstico , Atenção Secundária à Saúde , Teste para COVID-19
7.
J Parkinsons Dis ; 12(7): 2191-2209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155529

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) successfully controls the motor symptoms of Parkinson's disease (PD) but has associated cognitive side-effects. OBJECTIVE: Establish the short- and long-term cognitive effects of STN-DBS in PD. METHODS: Both the short-term and long-term effects of STN-DBS on cognition were examined through evaluation of the controlled studies that compared patients with STN-DBS to unoperated PD patients, thus controlling for illness progression. We also reviewed the literature to identify the factors that influence cognitive outcome of STN-DBS in PD. RESULTS: The meta-analysis of the short-term cognitive effects of STN-DBS revealed moderate effect sizes for semantic and phonemic verbal fluency and small effect sizes for psychomotor speed and language, indicating greater decline in the STN-DBS operated than the unoperated patients in these cognitive domains. The longer-term STN-DBS results from controlled studies indicated rates of cognitive decline/dementia up to 32%; which are no different from the rates from the natural progression of PD. Greater executive dysfunction and poorer memory pre-operatively, older age, higher pre-operative doses of levodopa, and greater axial involvement are some of the factors associated with worse cognition after STN-DBS in PD. CONCLUSION: This evidence can be used to inform patients and their families about the short-term and long-term risks of cognitive decline following STN-DBS surgery and aid the team in selection of suitable candidates for surgery.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Cognição/fisiologia , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Humanos , Levodopa , Doença de Parkinson/complicações , Doença de Parkinson/terapia
8.
Brain Sci ; 12(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36291292

RESUMO

Studies using transcranial magnetic stimulation (TMS) have demonstrated the importance of direction and intensity of the applied current when the primary motor cortex (M1) is targeted. By varying these, it is possible to stimulate different subsets of neural elements, as demonstrated by modulation of motor evoked potentials (MEPs) and motor behaviour. The latter involves premotor areas as well, and among them, the presupplementary motor area (pre-SMA) has recently received significant attention in the study of motor inhibition. It is possible that, similar to M1, different neuronal populations can be activated by varying the direction and intensity of TMS; however, the absence of a direct electrophysiological outcome has limited this investigation. The problem can be solved by quantifying direct cortical responses by means of combined TMS and electroencephalography (TMS-EEG). We investigated the effect of variable coil orientations (0°, 90°, 180° and 270°) and stimulation intensities (100%, 120% and 140% of resting motor threshold) on local mean field potential (LMFP), transcranial evoked potential (TEP) peaks and TMS-related spectral perturbation (TRSP) from pre-SMA stimulation. As a result, early and late LMFP and peaks were larger, with the coil handle pointing posteriorly (0°) and laterally (90°). This was true also for TRSP in the ß-γ range, but, surprisingly, θ-α TRSP was larger with the coil pointing at 180°. A 90° orientation activated the right M1, as shown by MEPs elicitation, thus limiting the spatial specificity of the stimulation. These results suggest that coil orientation and stimulation intensity are critical when stimulating the pre-SMA.

9.
Brain Sci ; 11(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806701

RESUMO

Motor cortex (M1) paired-pulse TMS (ppTMS) probes excitatory and inhibitory intracortical dynamics by measurement of motor-evoked potentials (MEPs). However, MEPs reflect cortical and spinal excitabilities and therefore cannot isolate cortical function. Concurrent TMS-EEG has the ability to measure cortical function, while limiting peripheral confounds; TMS stimulates M1, whilst EEG acts as the readout: the TMS-evoked potential (TEP). Whilst varying preconditioning stimulus intensity influences intracortical inhibition measured by MEPs, the effects on TEPs is undefined. TMS was delivered to the left M1 using single-pulse and three, ppTMS paradigms, each using a different preconditioning stimulus: 70%, 80% or 90% of resting motor threshold. Corticospinal inhibition was present in all three ppTMS conditions. ppTMS TEP peaks were reduced predominantly under the ppTMS 70 protocol but less so for ppTMS 80 and not at all for ppTMS 90. There was a significant negative correlation between MEPs and N45 TEP peak for ppTMS 70 reaching statistical trends for ppTMS 80 and 90. Whilst ppTMS MEPs show inhibition across a range of preconditioning stimulus intensities, ppTMS TEPs do not. TEPs after M1 ppTMS vary as a function of preconditioning stimulus intensity: smaller preconditioning stimulus intensities result in better discriminability between conditioned and unconditioned TEPs. We recommend that preconditioning stimulus intensity should be minimized when using ppTMS to probe intracortical inhibition.

10.
Brain Stimul ; 14(1): 4-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33127580

RESUMO

BACKGROUND: the use of combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) for the functional evaluation of the cerebral cortex in health and disease is becoming increasingly common. However, there is still some ambiguity regarding the extent to which brain responses to auditory and somatosensory stimulation contribute to the TMS-evoked potential (TEP). OBJECTIVE/HYPOTHESIS: to measure separately the contribution of auditory and somatosensory stimulation caused by TMS, and to assess their contribution to the TEP waveform, when stimulating the motor cortex (M1). METHODS: 19 healthy volunteers underwent 7 blocks of EEG recording. To assess the impact of auditory stimulation on the TEP waveform, we used a standard figure of eight coil, with or without masking with a continuous noise reproducing the specific time-varying frequencies of the TMS click, stimulating at 90% of resting motor threshold. To further characterise auditory responses due to the TMS click, we used either a standard or a sham figure of eight coil placed on a pasteboard cylinder that rested on the scalp, with or without masking. Lastly, we used electrical stimulation of the scalp to investigate the possible contribution of somatosensory activation. RESULTS: auditory stimulation induced a known pattern of responses in electrodes located around the vertex, which could be suppressed by appropriate noise masking. Electrical stimulation of the scalp alone only induced similar, non-specific scalp responses in the in the central electrodes. TMS, coupled with appropriate masking of sensory input, resulted in specific, lateralized responses at the stimulation site, lasting around 300 ms. CONCLUSIONS: if careful control of confounding sources is applied, TMS over M1 can generate genuine, lateralized EEG activity. By contrast, sensory evoked responses, if present, are represented by non-specific, late (100-200 ms) components, located at the vertex, possibly due to saliency of the stimuli. Notably, the latter can confound the TEP if masking procedures are not properly used.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Eletroencefalografia , Potenciais Evocados , Potencial Evocado Motor , Humanos , Couro Cabeludo
11.
Brain Sci ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499330

RESUMO

Electroencephalographic (EEG) signals evoked by transcranial magnetic stimulation (TMS) are usually recorded with passive electrodes (PE). Active electrode (AE) systems have recently become widely available; compared to PE, they allow for easier electrode preparation and a higher-quality signal, due to the preamplification at the electrode stage, which reduces electrical line noise. The performance between the AE and PE can differ, especially with fast EEG voltage changes, which can easily occur with TMS-EEG; however, a systematic comparison in the TMS-EEG setting has not been made. Therefore, we recorded TMS-evoked EEG potentials (TEPs) in a group of healthy subjects in two sessions, one using PE and the other using AE. We stimulated the left primary motor cortex and right medial prefrontal cortex and used two different approaches to remove early TMS artefacts, Independent Component Analysis and Signal Space Projection-Source Informed Recovery. We assessed statistical differences in amplitude and topography of TEPs, and their similarity, by means of the concordance correlation coefficient (CCC). We also tested the capability of each system to approximate the final TEP waveform with a reduced number of trials. The results showed that TEPs recorded with AE and PE do not differ in amplitude and topography, and only few electrodes showed a lower-than-expected CCC between the two methods of amplification. We conclude that AE are a viable solution for TMS-EEG recording.

12.
Neuropharmacology ; 179: 108278, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32827517

RESUMO

Response inhibition describes the cognitive processes mediating the suppression of unwanted actions. A network involving the basal ganglia mediates two forms of response inhibition: reactive and proactive inhibition. Reactive inhibition serves to abruptly stop motor activity, whereas proactive inhibition is goal-orientated and results in slowing of motor activity in anticipation of stopping. Due to its impairment in several psychiatric disorders, the neurochemistry of response inhibition has become of recent interest. Dopamine has been posed as a candidate mediator of response inhibition due to its role in functioning of the basal ganglia and the observation that patients with Parkinson's disease on dopamine agonists develop impulse control disorders. Although the effects of dopamine on reactive inhibition have been studied, substantial literature on the role of dopamine on proactive inhibition is lacking. To fill this gap, we devised a double-blind, placebo-controlled study of 1 mg ropinirole (a dopamine agonist) on response inhibition in healthy volunteers. We found that whilst reactive inhibition was unchanged, proactive inhibition was impaired when participants were on ropinirole relative to when on placebo. To investigate how ropinirole mediated this effect on proactive inhibition, we used hierarchical drift-diffusion modelling. We found that ropinirole impaired the ability to raise the decision threshold when proactive inhibition was called upon. Our results provide novel evidence that an acute dose of ropinirole selectively reduces proactive inhibition in healthy participants. These results may help explain how ropinirole induces impulse control disorders in susceptible patients with Parkinson's disease.


Assuntos
Agonistas de Dopamina/administração & dosagem , Indóis/administração & dosagem , Inibição Psicológica , Tempo de Reação/efeitos dos fármacos , Receptores de Dopamina D3/agonistas , Administração Oral , Adulto , Agonistas de Dopamina/metabolismo , Método Duplo-Cego , Feminino , Humanos , Indóis/metabolismo , Masculino , Tempo de Reação/fisiologia , Receptores de Dopamina D3/metabolismo , Adulto Jovem
13.
Front Neurol ; 11: 584664, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224098

RESUMO

Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.

14.
Brain Stimul ; 11(2): 289-298, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29146468

RESUMO

BACKGROUND: Measurements and models of current flow in the brain during transcranial Direct Current Stimulation (tDCS) indicate stimulation of regions in-between electrodes. Moreover, the folded cortex results in local fluctuations in current flow intensity and direction, and animal studies suggest current flow direction relative to cortical columns determines response to tDCS. METHODS: Here we test this idea by using Transcranial Magnetic Stimulation Motor Evoked Potentials (TMS-MEP) to measure changes in corticospinal excitability following tDCS applied with electrodes aligned orthogonal (across) or parallel to M1 in the central sulcus. RESULTS: Current flow models predicted that the orthogonal electrode montage produces consistently oriented current across the hand region of M1 that flows along cortical columns, while the parallel electrode montage produces non-uniform current directions across the M1 cortical surface. We find that orthogonal, but not parallel, orientated tDCS modulates TMS-MEPs. We also show modulation is sensitive to the orientation of the TMS coil (PA or AP), which is thought to select different afferent pathways to M1. CONCLUSIONS: Our results are consistent with tDCS producing directionally specific neuromodulation in brain regions in-between electrodes, but shows nuanced changes in excitability that are presumably current direction relative to column and axon pathway specific. We suggest that the direction of current flow through cortical target regions should be considered for targeting and dose-control of tDCS.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Vias Aferentes/fisiologia , Axônios/fisiologia , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pensamento/fisiologia , Adulto Jovem
15.
Front Neurosci ; 12: 400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946234

RESUMO

Continuous theta-burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation paradigm reported to decrease the excitability of the stimulated cortical area and which is thought to reflect a form of inhibitory synaptic plasticity. However, since its introduction, the effect of cTBS has shown a remarkable variability in its effects, which are often quantified by measuring the amplitude of motor evoked potentials (MEPs). Part of this inconsistency in experimental results might be due to an intrinsic variability of TMS effects caused by genetic or neurophysiologic factors. However, it is also possible that MEP only reflect the excitability of a sub-population of output neurons; resting EEG power and measures combining TMS and electroencephalography (TMS-EEG) might represent a more thorough reflection of cortical excitability. The aim of the present study was to verify the robustness of several predictors of cTBS response, such as I wave recruitment and baseline MEP amplitude, and to test cTBS after-effects on multiple neurophysiologic measurements such as MEP, resting EEG power, local mean field power (LMFP), TMS-related spectral perturbation (TRSP), and inter-trial phase clustering (ITPC). As a result, we were not able to confirm either the expected decrease of MEP amplitude after cTBS or the ability of I wave recruitment and MEP amplitude to predict the response to cTBS. Resting EEG power, LMFP, TRSP, and ITPC showed a more consistent trend toward a decrease after cTBS. Overall, our data suggest that the effect of cTBS on corticospinal excitability is variable and difficult to predict with common electrophysiologic markers, while its effect might be clearer when probed with combined TMS and EEG.

16.
Brain Stimul ; 10(4): 744-747, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28404455

RESUMO

BACKGROUND: Polarising currents can modulate membrane potentials in animals, affecting the after-effect of theta burst stimulation (TBS) on synaptic strength. OBJECTIVE: We examined whether a similar phenomenon could also be observed in human motor cortex (M1) using transcranial direct current stimulation (TDCS) during monophasic intermittent TBS (iTBS). METHODS: TDCS was applied during posterior-anterior iTBS using three different conditions: posterior-anterior TDCS (anode 3.5 cm posterior to M1, cathode 3.5 cm anterior to M1), anterior-posterior TDCS (cathode 3.5 cm posterior to M1, anode 3.5 cm anterior to M1), and sham TDCS. RESULTS: When the direction of TDCS (posterior-anterior) matched the direction of the electrical field induced by iTBS, we found a 19% non-significant increase in excitability changes in comparison with iTBS combined with sham TDCS. When the TDCS was reversed (anterior-posterior), the excitatory effect of iTBS was abolished. CONCLUSION: Our findings suggest that excitatory after-effects of iTBS can be modulated by directionally-specific TDCS.


Assuntos
Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Potencial Evocado Motor , Feminino , Humanos , Masculino , Estudo de Prova de Conceito , Ritmo Teta , Estimulação Transcraniana por Corrente Contínua/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA