Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 634(8033): 381-388, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39322670

RESUMO

The acquisition of the load-bearing dentary-squamosal jaw joint was a key step in mammalian evolution1-5. Although this innovation has received decades of study, questions remain over when and how frequently a mammalian-like skull-jaw contact evolved, hindered by a paucity of three-dimensional data spanning the non-mammaliaform cynodont-mammaliaform transition. New discoveries of derived non-mammaliaform probainognathian cynodonts from South America have much to offer to this discussion. Here, to address this issue, we used micro-computed-tomography scanning to reconstruct the jaw joint anatomy of three key probainognathian cynodonts: Brasilodon quadrangularis, the sister taxon to Mammaliaformes6-8, the tritheledontid-related Riograndia guaibensis9 and the tritylodontid Oligokyphus major. We find homoplastic evolution in the jaw joint in the approach to mammaliaforms, with ictidosaurs (Riograndia plus tritheledontids) independently evolving a dentary-squamosal contact approximately 17 million years before this character first appears in mammaliaforms of the Late Triassic period10-12. Brasilodon, contrary to previous descriptions6-8, lacks an incipient dentary condyle and squamosal glenoid and the jaws articulate solely using a plesiomorphic quadrate-articular joint. We postulate that the jaw joint underwent marked evolutionary changes in probainognathian cynodonts. Some probainognathian clades independently acquired 'double' craniomandibular contacts, with mammaliaforms attaining a fully independent dentary-squamosal articulation with a conspicuous dentary condyle and squamosal glenoid in the Late Triassic. The dentary-squamosal contact, which is traditionally considered to be a typical mammalian feature, therefore evolved more than once and is more evolutionary labile than previously considered.


Assuntos
Fósseis , Arcada Osseodentária , Mamíferos , Filogenia , Animais , Arcada Osseodentária/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Brasil , Microtomografia por Raio-X , Evolução Biológica , Articulações/anatomia & histologia , Crânio/anatomia & histologia
2.
Proc Biol Sci ; 291(2029): 20240720, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39163982

RESUMO

Extant crocodilian jaws are subject to functional demands induced by feeding and hydrodynamics. However, the morphological and ecological diversity of extinct crocodile-line archosaurs is far greater than that of living crocodilians, featuring repeated convergence towards disparate ecologies including armoured herbivores, terrestrial macropredators and fully marine forms. Crocodile-line archosaurs, therefore, present a fascinating case study for morphological and functional divergence and convergence within a clade across a wide range of ecological scenarios. Here, we build performance landscapes of two-dimensional theoretical jaw shapes to investigate the influence of strength, speed and hydrodynamics in the morphological evolution of crocodile-line archosaur jaws, and test whether ecologically convergent lineages evolved similarly optimal jaw function. Most of the 243 sampled jaw morphologies occupy optimized regions of theoretical morphospace for either rotational efficiency, resistance to Von Mises stress, hydrodynamic efficiency or a trade-off between multiple functions, though some seemingly viable shapes remain unrealized. Jaw speed is optimized only in a narrow region of morphospace whereas many shapes possess optimal jaw strength, which may act as a minimum boundary rather than a strong driver for most taxa. This study highlights the usefulness of theoretical morphology in assessing functional optimality, and for investigating form-function relationships in diverse clades.


Assuntos
Jacarés e Crocodilos , Evolução Biológica , Arcada Osseodentária , Animais , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Fenômenos Biomecânicos , Fósseis/anatomia & histologia , Hidrodinâmica , Mandíbula/anatomia & histologia , Mandíbula/fisiologia
3.
Sci Adv ; 8(36): eadc8875, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083907

RESUMO

The developmental underpinnings and functional consequences of modifications to the limbs during the origin of the tetrapod body plan are increasingly well characterized, but less is understood about the evolution of the tetrapod skull. Decrease in skull bone number has been hypothesized to promote morphological and functional diversification in vertebrate clades, but its impact during the initial rise of tetrapods is unknown. Here, we test this by quantifying topological changes to cranial anatomy in fossil and living taxa bracketing the fin-to-limb transition using anatomical network analysis. We find that bone loss across the origin of tetrapods is associated not only with increased complexity of bone-to-bone contacts but also with decreasing topological diversity throughout the late Paleozoic, which may be related to developmental and/or mechanical constraints. We also uncover a 10-Ma offset between fin-limb and cranial morphological evolution, suggesting that different evolutionary drivers affected these features during the origin of tetrapods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA