RESUMO
Corrosion of metal/steel is a major concern in terms of safety, durability, cost, and environment. We have studied a cost-effective, nontoxic, and environmentally friendly pyromellitic diimide (PMDI) compound as a corrosion inhibitor for galvanized steel through density functional theory. An atomic-scale engineering through the functionalization of PMDI is performed to showcase the enhancement in corrosion inhibition and strengthen the interaction between functionalized PMDI (F-PMDI) and zinc oxide (naturally existing on galvanized steel). PMDI is functionalized with methyl/diamine groups (inh1 (R = -CH3, R' = -CH3), inh2 (R = -CH3, R' = -CH2CH2NH2), and inh3 (R = -C6H3(NH2)2, R' = -CH2CH2NH2). The corrosion inhibition parameters (e.g., orbital energies, electronegativity, dipole moment, global hardness, and electron transfer) indicate the superior corrosion inhibition performance of inh3 (inh3 > inh2 > inh1). Inh3 (â¼182.38 kJ/mol) strongly interacts with ZnO(101Ì 0) compared to inh2 (â¼122.56 kJ/mol) and inh1 (â¼119.66 kJ/mol). The superior performance of inh3 has been probed through charge density and density of states. Larger available states of N and H (of inh3) interact strongly with Zn and Osurf (of the surface), respectively, creating N-Zn and H-Osurf bonds. Interestingly, these bonds only appear in inh3. The charge accumulation on Osurf, and depletion on H(s), further strengthens the bonding between inh3 and ZnO(101Ì 0). The microscopic understanding obtained in this study will be useful to develop low-cost and efficient corrosion inhibitors for galvanized steel.
RESUMO
The geometry and bonding nature of Cp(CO)(2)W(CCH)(SiH(2)) (1) and the reaction leading to the formation of 1 from Cp(CO)(2)W(SiH(2)C triple bond CH)(9) were theoretically investigated with DFT, MP2 to MP4(SDTQ), and CCSD(T) methods, where 9 and 1 were adopted as models of the interesting new complexes reported recently, Cp*(CO)(2)W(Si(Ph)(2)C triple bond C(t)Bu) and Cp*(CO)(2)W(C triple bond C(t)Bu)(SiPh(2)), respectively. Our computational results clearly indicate that 1 involves neither a pure silacyclopropenyl group nor pure silylene and acetylide groups and that the silylene group strongly interacts with both the W center and the acetylide group. Frontier orbitals of 1 resemble those observed in the formation of silacyclopropene from silylene and acetylene. The frontier orbitals, as well as the geometry, indicate that the (CCH)(SiH(2)) moiety of 1 can be understood in terms of an interesting intermediate species trapped by the W center in that formation reaction. Complex 1 is easily formed from 9 through Si-C sigma-bond activation with moderate activation barriers of 15.3, 18.8, and 15.8 kcal/mol, which are the DFT-, MP4(SDTQ)-, and CCSD(T)-calculated values, respectively. This reaction takes place without a change of the oxidation state of the W center. Intermediate 9 is easily formed from Cp(CO)(2)W(Me)(H(3)SiC triple bond CH) via Si-H oxidative addition, followed by C-H reductive elimination. The bonding nature of 9 is also very interesting; the nonbonding pi-orbital of the H(2)SiCCH moiety is essentially the same as that of the propargyl group, but the pi-conjugation between Si and C atoms is very weak in the pi-orbital, unlike that in the propargyl group.