Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242707

RESUMO

For the first time, a nanosilver-coated hollow fiber microfiltration (MF) was fabricated by a simple chemical reduction method, then tested for membrane biofouling mitigation study under extreme high mixed liquor suspended solid (MLSS) concentration for long term. This study presents a simple and novel technique to modify a commercially available MF membrane using silver nanoparticles (AgNPs) followed by an investigation of mitigating membrane biofouling potentials using this modified membrane to compare with an unmodified membrane for 60-day operation period. The modified membranes showed that AgNPs was attached to the MF-membrane successfully with a high density of 119.85 ± 5.42 mg/m2. After long-term testing of 60 days in membrane bioreactor with a MLSS concentration of 11,000 mg/L, specific flux of the AgNPs coated MF (AgNPs-MF) decreased 59.7%, while the specific flux of the unmodified membrane dropped 81.8%, resulted from the increase of transmembrane vacuum pressure for the AgNPs-MF was lower than that of the unmodified one. The resistance-in-series model was used to calculate the resistance coefficients of membrane modules, and the result showed that the cake layer resistance coefficient of the unmodified membrane was 2.7 times higher than that of the AgNPs-MF after the 60-day operation, confirming that AgNPs displayed great antimicrobial properties to mitigate membrane biofouling under such high MLSS.


Assuntos
Incrustação Biológica , Reatores Biológicos , Membranas Artificiais , Nanopartículas Metálicas , Prata , Ultrafiltração , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Prata/química , Análise Espectral
2.
J Environ Manage ; 209: 346-353, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306844

RESUMO

Selection of a proper osmotic agent is important to make the forward osmosis (FO) feasible. The objective of this study was to enhance FO by lowering reverse solute flux and maintaining high water flux. Poly(propylene glycol) with molecular weight of 725 Da (PPG-725) was found to possess high osmolality, making it a strong candidate for using as a draw agent. In addition, to reduce the partial leakage of draw solute, a non-ionic surfactant (Triton X-114) has been incorporated. Typically, when the hydrophobic tails of Triton X-114 interacted with the membrane surface, a layer on the surface of membrane is produced to constrict the pores and thus minimize the reverse solute flux. In this study, different concentrations of PPG-725 incorporated with different concentrations of Triton X-114 (0.2-0.8 mM) were used to evaluate their osmotic potentials as draw solute. The specific reverse solute flux (Js/Jw) of 40% PPG-725 doped with Triton X-114 was found to be 0.01 g/L, considerably much lesser than the conventional inorganic draw agents. Finally, membrane distillation operation was utilized as the recovery system in which solute rejection of 97% was achieved for 40% PPG-725/Triton X-114. Therefore, the overall performance supported PPG-725/Triton X-114 as being an efficient draw agent for forward osmosis-membrane distillation hybrid process.


Assuntos
Polieletrólitos , Polietilenoglicóis/química , Purificação da Água , Membranas Artificiais , Osmose , Tensoativos
3.
Environ Technol Innov ; 26: 102290, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35036477

RESUMO

During the COVID-19 pandemic, the extensive use of face masks and protective personal equipment (PPE) kits has led to increasing degree of microplastic pollution (MP) because they are typically discarded into the seas, rivers, streets, and other parts of the environment. Currently, microplastic (MP) pollution has a negative impact on the environment because of high-level fragmentation. Typically, MP pollution can be detected by various techniques, such as microscopic analysis, density separation, and Fourier transform infrared spectrometry. However, there are limited studies on disposable face masks and PPE kits. A wide range of marine species ingest MPs in the form of fibers and fragments, which directly affect the environment and human health; thus, more research and development are needed on the effect of MP pollution on human health. This article provides a perspective on the origin and distribution of MP pollution in waterbodies (e.g., rivers, ponds, lakes, and seas) and wastewater treatment plants, and reviews the possible remediation of MP pollution related to the excessive disposal of face masks and PPE kits to aquatic environments.

4.
Environ Technol Innov ; 28: 102837, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35879973

RESUMO

The threat of epidemic outbreaks like SARS-CoV-2 is growing owing to the exponential growth of the global population and the continual increase in human mobility. Personal protection against viral infections was enforced using ambient air filters, face masks, and other respiratory protective equipment. Available facemasks feature considerable variation in efficacy, materials usage and characteristic properties. Despite their widespread use and importance, face masks pose major potential threats due to the uncontrolled manufacture and disposal techniques. Improper solid waste management enables viral propagation and increases the volume of associated biomedical waste at an alarming rate. Polymers used in single-use face masks include a spectrum of chemical constituents: plasticisers and flame retardants leading to health-related issues over time. Despite ample research in this field, the efficacy of personal protective equipment and its impact post-disposal is yet to be explored satisfactorily. The following review assimilates information on the different forms of personal protective equipment currently in use. Proper waste management techniques pertaining to such special wastes have also been discussed. The study features a holistic overview of innovations made in face masks and their corresponding impact on human health and environment. Strategies with SDG3 and SDG12, outlining safe and proper disposal of solid waste, have also been discussed. Furthermore, employing the CFD paradigm, a 3D model of a face mask was created based on fluid flow during breathing techniques. Lastly, the review concludes with possible future advancements and promising research avenues in personal protective equipment.

5.
J Hazard Mater ; 403: 123637, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32818831

RESUMO

Triiodide, a larger charged molecule compared to iodide, is thermodynamically favored with the presence of both iodide and iodine, and is easier to be retained by membrane processes. For the first time, iodide was recovered in the form of triiodide by forward osmosis (FO) for thin-film transistor liquid crystal display industries by preoxidation of iodide to triiodide. Partial oxidation by NaOCl was used to convert the iodide to iodine and then to form triiodide. Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), a commonly used chelating agent in the industry, was used as the draw solute because of its low reverse salt flux. The results revealed that the ideal efficiency of iodide recovery was at pH 3 with a preoxidation (adding 0.0150 M NaClO) for the 0.048 M iodide wastewater with a recovery of 98.5%. Additionally, the Pourbaix diagram and starch indicator were used to verify the formation of triiodide. Membrane distillation was demonstrated to recover the EDTA-2Na draw solute, and more than 99% of recoveries for the draw solutes with initial water flux of 12.0 L/m2 h were achieved, indicating that simultaneous recovery of the EDTA-2Na draw solute and water is feasible.

6.
Data Brief ; 35: 106794, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33604424

RESUMO

We present here a data set generated from a multinational survey on opinions of university community members on the prospect of consuming food grown with human urine as fertiliser and about their urine recycling perceptions in general. The data set comprises answers from 3,763 university community members (students, faculty/researchers, and staff) from 20 universities in 16 countries and includes demographic variables (age bracket, gender, type of settlement of origin, academic discipline, and role in the university). Questions were designed based on Ajzen's theory of planned behaviour to elicit information about three components of behavioural intention-attitudes, subjective norms, and perceived behavioural control. Survey questions covered perceived risks and benefits (attitudes), perceptions of colleagues (injunctive social norm) and willingness to consume food grown with cow urine/faeces (descriptive social norm), and willingness to pay a price premium for food grown with human urine as fertiliser (perceived behavioural control). We also included a question about acceptable urine recycling and disposal options and assessed general environmental outlook via the 15-item revised New Ecological Paradigm (NEP) scale. Data were collected through a standardised survey instrument translated into the relevant languages and then administered via an online form. Invitations to the survey were sent by email to university mailing lists or to a systematic sample of the university directory. Only a few studies on attitudes towards using human urine as fertiliser have been conducted previously. The data described here, which we analysed in "Willingness among food consumers at universities to recycle human urine as crop fertiliser: Evidence from a multinational survey" [1], may be used to further understand potential barriers to acceptance of new sanitation systems based on wastewater source separation and urine recycling and can help inform the design of future sociological studies.

7.
Sci Total Environ ; 765: 144438, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33418332

RESUMO

Source-separating sanitation systems offer the possibility of recycling nutrients present in wastewater as crop fertilisers. Thereby, they can reduce agriculture's impacts on global sources, sinks, and cycles for nitrogen and phosphorous, as well as their associated environmental costs. However, it has been broadly assumed that people would be reluctant to perform the new sanitation behaviours that are necessary for implementing such systems in practice. Yet, few studies have tried to systematically gather evidence in support of this assumption. To address this gap, we surveyed 3763 people at 20 universities in 16 countries using a standardised questionnaire. We identified and systematically assessed cross-cultural and country-level explanatory factors that were strongly associated with people's willingness to consume food grown using human urine as fertiliser. Overall, 68% of the respondents favoured recycling human urine, 59% stated a willingness to eat urine-fertilised food, and only 11% believed that urine posed health risks that could not be mitigated by treatment. Most people did not expect to pay less for urine-fertilised food, but only 15% were willing to pay a price premium. Consumer perceptions were found to differ greatly by country and the strongest predictive factors for acceptance overall were cognitive factors (perceptions of risks and benefits) and social norms. Increasing awareness and building trust among consumers about the effectiveness of new sanitation systems via cognitive and normative messaging can help increase acceptance. Based on our findings, we believe that in many countries, acceptance by food consumers will not be the major social barrier to closing the loop on human urine. That a potential market exists for urine-fertilised food, however, needs to be communicated to other stakeholders in the sanitation service chain.


Assuntos
Fertilizantes , Reciclagem , Comportamento do Consumidor , Alimentos , Humanos , Inquéritos e Questionários , Águas Residuárias
8.
Environ Technol Innov ; 20: 101093, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32835034

RESUMO

With the emergence of the coronavirus disease (COVID-19), it is essential that face masks demonstrating significant anti-droplet and hydrophobic characteristics are developed and distributed. In this study, a commercial compressed-polyurethane (C-PU) mask was modified by applying a hydrophobic and anti-droplet coating using a silica sol, which was formed by the hydrolysis of tetraethoxysilane (TEOS) under alkaline conditions and hydrolyzed hexadecyltrimethoxysilane (HDTMS) to achieve hydrophobization. The modified mask (C-PU/Si/HDTMS) demonstrated good water repellency resulting in high water contact angle (132°) and low sliding angle (17°). Unmodified and modified masks were characterized using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). A drainage test confirmed the strong interaction between the mask surface and coating. Moreover, the coating had negligible effect on the average pore size of the C-PU mask, which retained its high breathability after modification. The application of this coating is a facile approach to impart anti-droplet, hydrophobic, and self-cleaning characteristics to C-PU masks.

9.
Environ Sci Pollut Res Int ; 27(28): 34664-34674, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401797

RESUMO

Progressive freezing is a solvent purification technology with low energy requirements and high concentration efficiency. Although these advantages make it a promising technology, the technique has never been explored for draw solution recovery for forward osmosis (FO). Hence, in this study, the progressive freezing process was used to concentrate three common diluted draw solutions: NaCl, MgCl2, and EDTA-2Na with different ice front speeds, stirring rates, and initial draw solution concentrations. Effective partition and intrinsic partition constants were also evaluated. The results reveal that the freezing process can achieve a draw solution recovery rate of 99.73%, 99.06%, and 98.65% with NaCl, MgCl2, and EDTA-2Na, respectively, using an ice front speed of 0.5 cm/h, a stirring rate of 2.62 m/s, and 30% of percentage of ice phase. Higher concentration efficiency for NaCl and MgCl2 was achieved due to the high solubility of NaCl and MgCl2 increased solute diffusion into the liquid phase solutions. The concentration factors for all three draw solutions exceeded 1.9, indicating that the draw solutes could be reused for the FO process. In addition, the two mass transfer coefficients depended on the ice front speed and the stirring rates were also obtained for scaling up the experiment in the future.


Assuntos
Membranas Artificiais , Purificação da Água , Congelamento , Osmose , Soluções
10.
Polymers (Basel) ; 12(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877628

RESUMO

Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.

11.
RSC Adv ; 9(29): 16869-16883, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516413

RESUMO

Additive manufacturing (AM), which is also commonly known as 3D printing, provides flexibility in the manufacturing of complex geometric parts at competitive prices and within a low production time. However, AM has not been used to a large extent in filtration and water treatment processes. AM results in the creation of millions of nanofibers that are sublayered on top of each other and compressed into a thin membrane. AM is a novel technique for fabricating filtration membranes with different shapes, sizes and controlled porosity, which cannot be achieved using conventional process such as electrospinning and knife casting. In this paper, we review the advantages and limitations of AM processes for fabricating ceramic membranes. Moreover, a brief background of AM processes is provided, and their future prospects are examined. Due to their potential benefits for fabrication and flexibility with different materials, AM methods are promising in the field of membrane engineering.

12.
Bioresour Technol ; 287: 121466, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31108413

RESUMO

A novel upflow anaerobic sludge-forward osmotic membrane bioreactor was developed for simultaneous wastewater treatment, membrane fouling reduction, and nutrient recovery. An upflow anaerobic sludge blanket (UASB) reactor was incorporated into the system, suspending the anaerobic sludge at the bottom of the reactor. A forward osmosis membrane replaced the traditional three-phase separator of the UASB technology. The removals of chemical oxygen demand, PO43-, and NH4+ were all more than 95% with low membrane fouling in this system. Halotolerant Fusibacter, which can ferment organics to acetate, was increased rapidly from 0.1% to 5% in this saline environment. Acetoclastic Methanosaeta was the most dominant prokaryotes and responsible for majority of methane production. Reduction of membrane fouling in this system was verified by the fluorescence excitation-emission matrix spectrophotometry. Furthermore, phosphorus recovery and salinity build-up mitigation were achieved using periodic microfiltration to recover 57-105 mg/L phosphorus from pH 9 to 12.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Osmose , Eliminação de Resíduos Líquidos
13.
RSC Adv ; 8(18): 9640-9650, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35540818

RESUMO

Superhydrophobic membranes are essential for improved seawater desalination. This study presents the successful casting of a three-layered membrane composed of a top superhydrophobic coating onto a polypropylene (PP) mat through simple sol-gel processing of octadecyltrimethoxysilane (OTMS), and the bottom layer was casted with hydrophilic poly(vinyl alcohol) (PVA) by using a knife casting technique; this membrane represents a novel class of improved-performance membranes consisting of a top superhydrophobic coating onto a hydrophobic PP mat and a hydrophilic layer (PVA) at the bottom. OTMSs are well known low-surface-energy materials that enhance superhydrophobicity, and they were observed to be the ideal chemical group for increasing the hydrophobicity of the PP mat. The PVA layer acted as base layer absorbing the condensed vapor and thus enhancing the vapor flux across the membrane. The hybrid three-layered membrane exhibited superhydrophobicity, with an average contact angle of more than 160°, and demonstrated high performance in terms of rejection and water flux. This study also examined the pore size distribution, surface roughness, surface area, tensile strength, water flux, and salt rejection of the fabricated membrane. The salt rejection level was calculated to be 99.7%, and a high permeate flux of approximately 6.7 LMH was maintained for 16 h.

14.
Environ Sci Pollut Res Int ; 25(6): 5203-5211, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28527139

RESUMO

Forward osmosis (FO) has emerged as a viable technology to alleviate the global water crisis. The greatest challenge facing the application of FO technology is the lack of an ideal draw solution with high water flux and low reverse salt flux. Hence, the objective of this study was to enhance FO by lowering reverse salt flux and maintaining high water flux; the method involved adding small concentrations of Al2(SO4)3 to a MgCl2 draw solution. Results showed that 0.5 M MgCl2 mixed with 0.05 M of Al2(SO4)3 at pH 6.5 achieved a lower reverse salt flux (0.53 gMH) than that of pure MgCl2 (1.55 gMH) using an FO cellulose triacetate nonwoven (CTA-NW) membrane. This was due possibly to the flocculation of aluminum hydroxide in the mixed draw solution that constricted membrane pores, resulting in reduced salt diffusion. Moreover, average water fluxes of 4.09 and 1.74 L/m2-h (LMH) were achieved over 180 min, respectively, when brackish water (5 g/L) and sea water (35 g/L) were used as feed solutions. Furthermore, three types of membrane distillation (MD) membranes were selected for draw solution recovery; of these, a polytetrafluoroethylene membrane with a pore size of 0.45 µm proved to be the most effective in achieving a high salt rejection (99.90%) and high water flux (5.41 LMH) in a diluted draw solution.


Assuntos
Destilação/instrumentação , Destilação/métodos , Membranas Artificiais , Osmose , Sais/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Pressão Osmótica , Porosidade , Sais/química , Água/química
15.
RSC Adv ; 8(4): 1808-1819, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542592

RESUMO

Superhydrophobic membranes are necessary for effective membrane-based seawater desalination. This paper presents the successful fabrication of a novel electrospun nanofibrous membrane composed of polysulfone and Cera flava, which represents a novel class of enhanced performance membranes consisting of a superhydrophobic nanofibrous layer and hydrophobic polypropylene (PP). Cera flava, which helps lower the surface energy, was found to be the ideal additive for increasing the hydrophobicity of the polysulfone (PSF) polymeric solution because of its components such as long-chain hydrocarbons, free acids, esters, and internal chain methylene carbons. In the fabricated membrane, consisting of 10 v/v% Cera flava, the top PSF-CF nanofibrous layer is active and the lower PP layer is supportive. The hybrid membrane possesses superhydrophobicity, with an average contact angle of approximately 162°, and showed high performance in terms of rejection and water flux. This work also examined the surface area, pore size distribution, fiber diameter, surface roughness, mechanical strength, water flux, and rejection percentage of the membrane. The salt rejection was above 99.8%, and a high permeate flux of approximately 6.4 LMH was maintained for 16 h of operation.

16.
Sci Total Environ ; 557-558: 44-50, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994792

RESUMO

For the first time, a high charge of phosphate was used as the draw solute in a forward osmosis-membrane distillation (FO-MD) hybrid system for concentrating high-nutrient sludge. A high water flux (12.5L/m(2)h) and a low reverse salt flux (0.84g/m(2)) were simultaneously achieved at pH9 by using 0.1M Na3PO4 as the draw solute and deionized water as the feed solution in the FO process. The specific reverse salt flux of 0.1M Na3PO4 (Js/Jw=0.07g/L) was considerably less than that of 0.1M NaCl (Js/Jw=0.37g/L) because the complexion between Na(+) and HPO4(2-) at pH9 led to the reduction of free Na(+) ions, which subsequently reduced the reverse salt diffusion substantially. Moreover, for a feed solution with an initial sludge concentration of 3500mg/L, the sludge concentration could be concentrated to 19,800 and 22,000mg/L in the pressure-retarded osmosis (PRO) and FO membrane orientations, respectively, after 15h of operation. Four types of MD membranes were selected for draw solution recovery; of these, a polytetrafluoroethylene membrane with a pore size of 0.45µm was the most effective in achieving a high water flux (10.28L/m(2)h) and high salt rejection (approximately 100%) in a diluted Na3PO4 draw solution.

17.
Bioresour Technol ; 209: 8-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26946435

RESUMO

A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams.


Assuntos
Reatores Biológicos , Membranas Artificiais , Águas Residuárias/química , Purificação da Água/métodos , Biofilmes , Destilação/métodos , Ácido Edético/análogos & derivados , Ácido Edético/química , Osmose , Salinidade , Cloreto de Sódio
18.
Water Res ; 91: 305-13, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26803266

RESUMO

For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more nutrients due to the thick-biofilm layer on sponge carriers. Subsequently less membrane fouling was observed during the wastewater treatment process. A water flux of 11.38 L/(m(2) h) and a negligible reverse salt flux were documented when deionized water served as the feed solution and a mixture of 1.5 M MgCl2 and 1.5 mM Triton X-114 was used as the draw solution. The SMB-OsMBR hybrid system indicated that a stable water flux of 10.5 L/(m(2) h) and low salt accumulation were achieved in a 90-day operation. Moreover, the nutrient removal efficiency of the proposed system was close to 100%, confirming the effectiveness of simultaneous nitrification and denitrification in the biofilm layer on sponge carriers. The overall performance of the SMB-OsMBR hybrid system using MgCl2 coupled with Triton X-114 as the draw solution demonstrates its potential application in wastewater treatment.


Assuntos
Cloreto de Magnésio/química , Polietilenoglicóis/química , Tensoativos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/química , Membranas Artificiais , Octoxinol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA