Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 23(8): 935-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23640779

RESUMO

The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111-1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [(35)S]Met/Cys or glycans with [(3)H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [(3)H]MUC1 when compared with [(35)S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O-glycan processing from Gal1-4GlcNAc1-6(Gal1-3)GalNAc (core 2) to Gal1-3GalNAc (core 1).


Assuntos
Endossomos/metabolismo , Mucina-1/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Cães , Glicosilação , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Mucina-1/química , Mucina-1/genética , Mutação , Transporte Proteico
2.
Proteomics ; 10(2): 194-202, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19899082

RESUMO

This is the first differential expression proteomics study on a human syngeneic cellular in vitro progression model of the colorectal adenoma-to-carcinoma sequence, the anchorage-dependent non-tumorigenic adenoma derived cell line AA/C1 and the derived anchorage-independent and tumorigenic carcinoma cell line AA/C1/SB10C. The study is based on quantitative 2-DE and is complemented by Western blot validation. Excluding redundancies due to proteolysis and post-translational modified isoforms of over 2000 protein spots, 13 proteins were revealed as regulated with statistical variance being within the 95th confidence level and were identified by peptide mass fingerprinting in MALDI MS. Progression-associated proteins belong to the functional complexes of anaerobic glycolysis/gluconeogenesis, steroid biosynthesis, prostaglandin biosynthesis, the regulation and maintenance of the cytoskeleton, protein biosynthesis and degradation, the regulation of apoptosis or other functions. Partial but significant overlap was revealed with previous proteomics and transcriptomics studies in colorectal carcinoma. Among upregulated proteins we identified 3-HMG-CoA synthase, protein phosphatase 1, prostaglandin E synthase 2, villin 1, annexin A1, triosephosphate isomerase, phosphoserine aminotransferase 1, fumarylacetoacetate hydrolase and pyrroline-5-carboxylate reductase 1 (PYCR1), while glucose-regulated protein 78, cathepsin D, lamin A/C and quinolate phosphoribosyltransferase were downregulated.


Assuntos
Adenoma/química , Adenoma/patologia , Neoplasias Colorretais/química , Neoplasias Colorretais/patologia , Progressão da Doença , Proteoma/análise , Linhagem Celular Tumoral , Regulação para Baixo , Eletroforese em Gel Bidimensional , Humanos , Modelos Biológicos , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Regulação para Cima
3.
Proteomics ; 9(10): 2820-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19415654

RESUMO

Apically expressed human MUC1 is known to become endocytosed and either to re-enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi-vesicular bodies and the release of exosomes. By using recombinant fusion-tagged MUC1 as a bait protein we followed an anti-myc affinity-based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF-7 breast cancer cells. MUC1(+) lipid rafts were not only found to contain genuine raft proteins (flotillin-1, prohibitin, G protein, annexin A2), but also raft-associated proteins linking these to the cytoskeleton (ezrin/villin-2, profilin II, HSP27, gamma-actin, beta-actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin-dependent pathways and export via exosomes.


Assuntos
Neoplasias da Mama/química , Exossomos/química , Microdomínios da Membrana/química , Mucina-1/análise , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/análise , Feminino , Proteínas de Choque Térmico/análise , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mucina-1/metabolismo , Proteínas Proto-Oncogênicas c-myc/análise , Proteínas Recombinantes de Fusão , Reprodutibilidade dos Testes
4.
J Biol Chem ; 283(27): 18832-40, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18456664

RESUMO

To reveal insight into the initiation of mammalian O-mannosylation in vivo, recombinant glycosylation probes containing sections of human alpha-dystroglycan (hDG) were expressed in epithelial cell lines. We demonstrate that O-mannosylation within the mucin domain of hDG occurs preferentially at Thr/Ser residues that are flanked by basic amino acids. Protein O-mannosylation is independent of a consensus sequence, but strictly dependent on a peptide region located upstream of the mucin domain. This peptide region cannot be replaced by other N-terminal peptides, however, it is not sufficient to induce O-mannosylation on a structurally distinct mucin domain in hybrid constructs. The presented in vivo evidence for a more complex regulation of mammalian O-mannosylation contrasts with a recent in vitro study of O-mannosylation in human alpha-dystroglycan peptides indicating the existence of an 18-meric consensus sequence. We demonstrate in vivo that the entire region p377-417 is necessary and sufficient for O-mannosylation initiation of hDG, but not of MUC1 tandem repeats. The feature of a doubly controlled initiation process distinguishes mammalian O-mannosylation from other types of O-glycosylation, which are largely controlled by structural properties of the substrate positions and their local peptide environment.


Assuntos
Distroglicanas/metabolismo , Manose/metabolismo , Modificação Traducional de Proteínas/fisiologia , Sequência de Aminoácidos/fisiologia , Linhagem Celular , Distroglicanas/genética , Glicosilação , Humanos , Manose/genética , Mucina-1/genética , Mucina-1/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA