Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(33)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33930880

RESUMO

We demonstrate band to band tunneling (BTBT) in a carbon nanotube (CNT) field effect transistor. We employ local electrostatic doping assisted by charged traps within the oxide to produce an intramolecular PN junction along the CNT. These characteristics apply for both metallic (m-CNTs) and semiconducting (SC-CNTs) CNTs. For m-CNTs we present a hysteretic transfer characteristic which originates from local electrostatic doping in the middle segment of the CNT. This controlled doping is reversible and results in formation and destruction of a PN junction along the CNT channel. For SC-CNTs we observe BTBT, and analysis based on the WKB approximation reveals a very narrow depletion region and high transmission probability at the optimal energy bands overlap. These results may assist in developing a non-volatile one-dimensional PN junction memory cell and designing a tunneling based field effect transistor.

2.
NPJ Microgravity ; 9(1): 74, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696908

RESUMO

In the absence of gravity, surface tension dominates over the behavior of liquids. While this often poses a challenge in adapting Earth-based technologies to space, it can also provide an opportunity for novel technologies that utilize its advantages. In particular, surface tension drives a liquid body to a constant-mean-curvature shape with extremely smooth surfaces, properties which are highly beneficial for optical components. We here present the design, implementation and analysis of parabolic flight experiments demonstrating the creation and in-situ measurement of optical lenses made entirely by shaping liquids in microgravity. We provide details of the two experimental systems designed to inject the precise amount of liquid within the short microgravity timeframe provided in a parabolic flight, while also measuring the resulting lens' characteristics in real-time using both resolution target-imaging and Shack-Hartmann wavefront sensing. We successfully created more than 20 liquid lenses during the flights. We also present video recordings of the process, from the lenses' creation during microgravity and up until their collapse upon return to gravity. The work thus demonstrates the feasibility of creating and utilizing liquid-based optics in space.

3.
Chemphyschem ; 13(18): 4202-6, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23165969

RESUMO

Humidity plays an important role in molecular electronics. It facilitates charge movement on top of dielectric layers and modifies the device transfer characteristics. Using two different methods to probe temporal charge redistribution on the surface of dielectrics, we were able to extract the surface humidity for the first time. The first method is based on the relaxation time constants of the current through carbon nanotube field-effect transistors (CNTFETs), and the second is based on electric force microscopy (EFM) measurements. Moreover, we found that applying external gate biases modifies the surface humidity. A theoretical model based on dielectrophoretic attraction between the water molecules and the substrate is introduced to explain this observation, and the results support our hypothesis. Furthermore, it is found that upon the adsorption of two to three layers of water the surface conductivity saturates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA