Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 6(5): e03939, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32420498

RESUMO

The corrosion inhibition displays of two quinoxaline derivatives, on the corrosion of M-steel (M-steel) in 1 M HCl was studied by gravimetric, electrochemical, scanning electron microscopy (SEM), functional density theory (DFT) and molecular dynamic simulation (MD). The inhibitory efficacy increases with decreasing temperature and increases with inhibitor concentration and reached to 96 % (NSQN) and 92 % (CSQN) at 303 K and the optimum concentration (1×10-3 M). Ultraviolet-visible (UV-vis) spectroscopic analyses confirmed the presence of chemical interactions between the inhibitors and MS surface. The adsorption of NSQN & CSQN on the metallic surface obeys the Langmuir isotherm. A potentiodynamic polarization study confirmed that the inhibitors are of mixed-kind inhibitors. Theoretical computation (DFT) and molecular dynamics simulation (MD) are utilized to understand the mechanism of inhibition.

2.
Int J Biol Macromol ; 155: 645-655, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224172

RESUMO

The present study reports the synthesis, characterization and corrosion inhibition effects of chitosan (CH) and its 5-chloromethyl-8-hydroxyquinoline derivative (CH-HQ) for mild steel in acidic medium. The synthesized CH-HQ was characterized using 1H NMR and FT-IR spectroscopic methods. Corrosion inhibition efficiencies of CH and CH-HQ were measured using electrochemical and chemical techniques. The surface protection ability of the inhibitor molecules was also ascertained by surface analysis, while computational study was used to further justify the adsorption tendencies of the molecules on mild steel surface. CH-HQwasobserved to exhibit better protection efficiency than CH, as the highest inhibition efficiencies were recorded to be 78% and 93% for CH and CH-HQ, respectively. Potentiodynamic polarization studies revealed that CH and CH-HQ are mixed-type corrosion inhibitors over the studied temperature range (298 K ± 1 to 328 K ± 1). SEM-EDS studies were performed to demonstrate the adsorption of CH and CH-HQ on the mild steel surface. Adsorption behavior of the CH and CH-HQ was also supported by UV-visible (UV-vis) spectrophotometric analyses. Monte Carlo simulations (MC) and density functional theory (DFT) calculations were carried out to corroborate the experimental results.


Assuntos
Carboidratos/química , Quitosana/química , Método de Monte Carlo , Oxiquinolina/química , Polímeros/química , Teoria Quântica , Aço/química , Corrosão , Espectroscopia Dielétrica , Propriedades de Superfície
3.
Heliyon ; 5(11): e02759, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768434

RESUMO

The adsorption and corrosion inhibition properties of two imidazole derivatives namely, 2-(4-chlorophenyl)-1,4,5-triphenyl-1H-imidazole (IM-Cl) and 1,4,5-triphenyl-2-(p-tolyl)-1H-imidazole (IM-CH3) for mild steel in 0.5 M H2SO4 solution are studiedby electrochemical and computational calculations. The results obtained from the electrochemical methods show that IM-Cl and IM-CH3imparted high resistance and behave as mixed type inhibitors. Inhibition efficiency (IE %) increases with the increase of inhibitors concentration to attain 96 % and 91% at 10-3 M of IM-Cl and IM-CH3 respectively. EISdatais analyzed to model the inhibition process through appropriate equivalent circuit model. Thermodynamic and kinetic parameters controlling the adsorption process are calculated and discussed. DFT calculations are carried out at the B3LYP levels of theory with 6-31G (d,p) basis stein gas and aqueous phase for neutral and protonated forms. Quantum chemical calculations section of the study provides enough calculation and discussion on the relationship between corrosion inhibition and global reactivity descriptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA