Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 115: 104310, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567643

RESUMO

The food pathogen Campylobacter jejuni both colonizes the lower intestines of poultry and infects the lower intestines of humans. The lower intestines of both poultry and humans are also home to a wide range of commensal organisms which compete with an organism like C. jejuni for space and resources. The commensal organisms are believed to protect humans against infection by pathogens of the digestive tract like C. jejuni. The short chain fatty acid (SCFA) butyrate is a metabolite commonly produced by commensal organisms within both the poultry and human digestive tract. We investigated the effect that physiologically relevant concentrations of butyrate have on C. jejuni under in vitro conditions. Butyrate at concentrations of 5 and 20 mM negatively impacted C. jejuni motility and biofilm formation. These two traits are believed important for C. jejuni's ability to infect the lower intestines of humans. Additionally, 20 mM butyrate concentrations were observed to influence the expression of a range of different Campylobacter proteins. Constitutive expression of one of these proteins, LysR, within a C. jejuni strain partially lessened the negative influence butyrate had on the bacteria's motility.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Humanos , Animais , Butiratos/farmacologia , Campylobacter jejuni/fisiologia , Biofilmes , Intestinos , Trato Gastrointestinal , Infecções por Campylobacter/veterinária , Galinhas
2.
Appl Environ Microbiol ; 88(2): e0189121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788062

RESUMO

Prophage-encoded Escherichia coli O157:H7 transcription factor (TF), PchE, inhibits biofilm formation and attachment to cultured epithelial cells by reducing curli fimbriae expression and increasing flagella expression. To identify pchE regulators that might be used in intervention strategies to reduce environmental persistence or host infections, we performed a computational search of O157:H7 strain PA20 pchE promoter sequences for binding sites used by known TFs. A common site shared by MarA/SoxS/Rob TFs was identified and the typical MarA/Rob inducers, salicylate and decanoate, were tested for biofilm and motility effects. Sodium salicylate, a proven biofilm inhibitor, but not sodium decanoate, strongly reduced O157:H7 biofilms by a pchE-independent mechanism. Both salicylate and decanoate enhanced O157:H7 motility dependent on pchE using media and incubation temperatures optimum for culturing human epithelial cells. However, induction of pchE by salicylate did not activate the SOS response. MarA/SoxS/Rob inducers provide new potential agents for controlling O157:H7 interactions with the host and its persistence in the environment. IMPORTANCE There is a need to develop E. coli serotype O157:H7 nonantibiotic interventions that do not precipitate the release and activation of virulence factor-encoded prophage and transferrable genetic elements. One method is to stimulate existing regulatory pathways that repress bacterial persistence and virulence genes. Here we show that certain inducers of MarA and Rob have that ability, working through both pchE-dependent and pschE-independent pathways.


Assuntos
Biofilmes , Decanoatos , Escherichia coli O157 , Proteínas de Escherichia coli , Salicilatos , Biofilmes/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Decanoatos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Salicilatos/farmacologia , Sorogrupo , Transativadores/genética
3.
Microbiol Resour Announc ; 13(1): e0079223, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38099682

RESUMO

The whole-genome sequence of Escherichia coli strain DP033 is reported here. DP033 was isolated from a human rectal specimen in Tilburg, the Netherlands. In silico analysis showed that DP033 possessed 36 virulence-related genes and is a presumptive extraintestinal pathogenic E. coli and uropathogenic E. coli strain.

4.
J Ind Microbiol Biotechnol ; 40(5): 495-505, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494707

RESUMO

Listeria monocytogenes is a food-borne pathogen of significant threat to public health. Nisin is the only bacteriocin that can be used as a food preservative. Due to its antimicrobial activity, it can be used to control L. monocytogenes in food; however, the antimicrobial mechanism of nisin activity against L. monocytogenes is not fully understood. The CtsR (class III stress gene repressor) protein negatively regulates the expression of class III heat shock genes. A spontaneous pressure-tolerant ctsR deletion mutant that showed increased sensitivity to nisin has been identified. Microarray technology was used to monitor the gene expression profiles of the ctsR mutant under treatments with nisin. Compared to the nisin-treated wild type, 113 genes were up-regulated (>2-fold increase) in the ctsR deletion mutant whereas four genes were down-regulated (<-2-fold decrease). The up-regulated genes included genes that encode for ribosomal proteins, membrane proteins, cold-shock domain proteins, translation initiation and elongation factors, cell division, an ATP-dependent ClpC protease, a putative accessory gene regulator protein D, transport and binding proteins, a beta-glucoside-specific phosphotransferase system IIABC component, as well as hypothetical proteins. The down-regulated genes consisted of genes that encode for virulence, a transcriptional regulator, a stress protein, and a hypothetical protein. The gene expression changes determined by microarray assays were confirmed by quantitative real-time PCR analyses. Moreover, an in-frame deletion mutant for one of the induced genes (LMOf2365_1877) was constructed in the wild-type L. monocytogenes F2365 background. ΔLMOf2365_1877 had increased nisin sensitivity compared to the wild-type strain. This study enhances our understanding of how nisin interacts with the ctsR gene product in L. monocytogenes and may contribute to the understanding of the antibacterial mechanisms of nisin.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Nisina/farmacologia , Deleção de Sequência/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
J Ind Microbiol Biotechnol ; 38(9): 1523-33, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21298319

RESUMO

Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High hydrostatic pressure (HHP) treatment can be used to control Listeria monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock genes. A spontaneous pressure-tolerant ctsR mutant 2-1 that was able to survive under HHP treatment has been identified previously. So far, there is only limited information about the mechanisms of survival and adaptation of this mutant to high pressure. Microarray technology was used to monitor the gene expression profiles of the ctsR mutant 2-1 under HHP treatment. Compared to pressure-treated L. monocytogenes Scott A wild type, 17 genes were up-regulated (>2-fold increase) in the ctsR mutant 2-1, whereas 58 genes were down-regulated (<-2-fold decrease). The entire clpC operon was up-regulated in the ctsR mutant 2-1, indicating that the mutant CtsR protein was not a functional repressor. The increased levels of expression of stress-related genes in ctsR mutant 2-1 may contribute to its survival under high pressure. The reduced expression levels of the genes related to virulence, flagella synthesis, and cell division in the ctsR mutant 2-1 correlate with its characteristics (elongated cells, reduced virulence, and absence of flagella). The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. This study enhances our understanding of how Listeria monocytogenes survives under HHP and may contribute to the design of effective and economically feasible HHP treatment in food processing.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Pressão Hidrostática , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , Deleção de Sequência , Virulência/genética
6.
Appl Environ Microbiol ; 74(22): 6859-66, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18806004

RESUMO

To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.


Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Leite/microbiologia , Animais , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA