Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Anal Chem ; 88(16): 7904-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27442043

RESUMO

Sickle cell patients often require monthly transfusions with normal blood to treat the many complications of the disease. In this therapy, the clinician lowers the amount of hemoglobin S (HbS) containing red blood cells (RBCs) by transfusing normal blood units containing hemoglobin A (HbA). We have developed a point-of-care (POC) quantitative immunoassay for HbS to serve as a diagnostic aid for clinicians providing this life-saving treatment. The test consists of a small-footprint reader and cartridges that quantify the percentage of HbS in a small volume of patient blood. The test reports % HbS values in the range from 5 to 86% that highly correlate (slope 1.03, R(2) = 0.97) with currently used central laboratory HPLC systems. The test also shows a 1% limit of blank, 2% limit of detection, and 5% limit of quantitation. The test was also shown to encounter minimal effects from potential interferences. This cost-effective, POC HbS quantitative approach will allow for real-time transfusion monitoring in sickle cell treatment settings and therefore improve workflow and allow clinicians to quickly make informed therapeutic decisions.


Assuntos
Anemia Falciforme/tratamento farmacológico , Eritrócitos/química , Hemoglobina Falciforme/análise , Imunoensaio , Sistemas Automatizados de Assistência Junto ao Leito , Anemia Falciforme/diagnóstico , Humanos
2.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38271085

RESUMO

High-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy in the United States. Late diagnosis and the emergence of chemoresistance have prompted studies into how the tumor microenvironment, and more recently tumor innervation, may be leveraged for HGSC prevention and interception. In addition to stess-induced sources, concentrations of the sympathetic neurotransmitter norepinephrine (NE) in the ovary increase during ovulation and after menopause. Importantly, NE exacerbates advanced HGSC progression. However, little is known about the role of NE in early disease pathogenesis. Here, we investigated the role of NE in instigating anchorage independence and micrometastasis of preneoplastic lesions from the fallopian tube epithelium (FTE) to the ovary, an essential step in HGSC onset. We found that in the presence of NE, FTE cell lines were able to survive in ultra-low-attachment (ULA) culture in a ß-adrenergic receptor-dependent (ß-AR-dependent) manner. Importantly, spheroid formation and cell viability conferred by treatment with physiological sources of NE were abrogated using the ß-AR blocker propranolol. We have also identified that NE-mediated anoikis resistance may be attributable to downregulation of colony-stimulating factor 2. These findings provide mechanistic insight and identify targets that may be regulated by ovary-derived NE in early HGSC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Anoikis , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Microambiente Tumoral
3.
Sci Adv ; 9(19): eade4443, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163587

RESUMO

The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.


Assuntos
Neoplasias da Mama , Neurônios , Neoplasias Ovarianas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Camundongos , Modelos Animais de Doenças , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Substância P/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/secundário , Neurônios/patologia , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Ovário/inervação , Papillomavirus Humano , Análise de Sobrevida
4.
Commun Biol ; 5(1): 1362, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509990

RESUMO

Most ovarian high-grade serous carcinomas (HGSC) arise from Serous Tubal Intraepithelial Carcinoma (STIC) lesions in the distal end of the fallopian tube (FT). Formation of STIC lesions from FT secretory cells leads to seeding of the ovarian surface, with rapid tumor dissemination to other abdominal structures thereafter. It remains unclear how nascent malignant cells leave the FT to colonize the ovary. This report provides evidence that the L1 cell adhesion molecule (L1CAM) contributes to the ability of transformed FT secretory cells (FTSEC) to detach from the tube, survive under anchorage-independent conditions, and seed the ovarian surface. L1CAM was highly expressed on the apical cells of STIC lesions and contributed to ovarian colonization by upregulating integrins and fibronectin in malignant cells and activating the AKT and ERK pathways. These changes increased cell survival under ultra-low attachment conditions that mimic transit from the FT to the ovary. To study dissemination to the ovary, we developed a tumor-ovary co-culture model. We showed that L1CAM expression was important for FT cells to invade the ovary as a cohesive group. Our results indicate that in the early stages of HGSC development, transformed FTSECs disseminate from the FT to the ovary in a L1CAM-dependent manner.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Molécula L1 de Adesão de Célula Nervosa , Neoplasias Ovarianas , Feminino , Humanos , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias das Tubas Uterinas/metabolismo , Neoplasias das Tubas Uterinas/patologia , Cistadenocarcinoma Seroso/metabolismo
5.
Cell Rep ; 34(9): 108808, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657372

RESUMO

To identify genes whose loss confers resistance to CHK1 inhibitors, we perform genome-wide CRISPR-Cas9 screens in non-small-cell lung cancer (NSCLC) cell lines treated with the CHK1 inhibitor prexasertib (CHK1i). Five of the top six hits of the screens, MYBL2 (B-MYB), LIN54, FOXM1, cyclin A2 (CCNA2), and CDC25B, are cell-cycle-regulated genes that contribute to entry into mitosis. Knockout of MMB-FOXM1 complex components LIN54 and FOXM1 reduce CHK1i-induced DNA replication stress markers and premature mitosis during Late S phase. Activation of a feedback loop between the MMB-FOXM1 complex and CDK1 is required for CHK1i-induced premature mitosis in Late S phase and subsequent replication catastrophe, indicating that dysregulation of the S to M transition is necessary for CHK1 inhibitor sensitivity. These findings provide mechanistic insights into small molecule inhibitors currently studied in clinical trials and provide rationale for combination therapies.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Proteína Forkhead Box M1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Pirazóis/farmacologia , Transativadores/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Complexos Multiproteicos , Transdução de Sinais , Transativadores/genética
6.
Pharmacol Ther ; 210: 107524, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32197795

RESUMO

Ovarian cancer is the most lethal gynecologic malignancy in the United States. The mortality of this disease is primarily attributed to challenges in early detection and therapeutic resistance. Recent studies indicate that the majority of high-grade serous ovarian carcinomas (HGSCs) originate from aberrant fallopian tube epithelial (FTE) cells. This shift in thinking about ovarian cancer pathogenesis has been met with an effort to identify the early genetic and epigenetic changes that underlie the transformation of normal FTE cells and prompt them to migrate and colonize the ovary, ultimately giving rise to aggressive HGSC. While identification of these early changes is important for biomarker discovery, the emergence of epigenetic alterations in FTE chromatin may also provide new opportunities for early detection, prevention, and therapeutic intervention. Here we provide a comprehensive overview of the current knowledge regarding early epigenetic reprogramming that precedes HGSC tumor development, the way that these alterations affect both intrinsic and extrinsic tumor properties, and how the epigenome may be targeted to thwart HGSC tumorigenesis.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/genética , Epigênese Genética , Epigenoma , Células Epiteliais/patologia , Tubas Uterinas/patologia , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Ovarianas/genética , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/terapia , Células Epiteliais/metabolismo , Tubas Uterinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Neoplasias Císticas, Mucinosas e Serosas/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Císticas, Mucinosas e Serosas/terapia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Fenótipo , Microambiente Tumoral
7.
Trends Cancer ; 6(12): 1059-1067, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32807693

RESUMO

Over the past decade, several landmark reports have demonstrated that the nervous system plays an active role in cancer initiation and progression. These studies demonstrate that ablation of specific nerve types (parasympathetic, sympathetic, or sensory) abrogates tumor growth in a tissue-specific manner. Further, many tumor types are more densely innervated than their normal tissues of origin. These striking results raise fundamental questions regarding tumor innervation, how it is initiated, and how it molecularly contributes to disease. In this review, we aim to address what is currently known about the origin of tumor-infiltrating nerves, how they may be recruited to tumors, and how their presence may give rise to aggressive disease.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias/patologia , Células-Tronco Neurais/patologia , Nervos Periféricos/patologia , Reprogramação Celular , Progressão da Doença , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Nervos Periféricos/citologia , Nervos Periféricos/metabolismo
8.
Clin Cancer Res ; 25(20): 6127-6140, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31409614

RESUMO

PURPOSE: PARP inhibitors are approved for the treatment of high-grade serous ovarian cancers (HGSOC). Therapeutic resistance, resulting from restoration of homologous recombination (HR) repair or replication fork stabilization, is a pressing clinical problem. We assessed the activity of prexasertib, a checkpoint kinase 1 (CHK1) inhibitor known to cause replication catastrophe, as monotherapy and in combination with the PARP inhibitor olaparib in preclinical models of HGSOC, including those with acquired PARP inhibitor resistance. EXPERIMENTAL DESIGN: Prexasertib was tested as a single agent or in combination with olaparib in 14 clinically annotated and molecularly characterized luciferized HGSOC patient-derived xenograft (PDX) models and in a panel of ovarian cancer cell lines. The ability of prexasertib to impair HR repair and replication fork stability was also assessed. RESULTS: Prexasertib monotherapy demonstrated antitumor activity across the 14 PDX models. Thirteen models were resistant to olaparib monotherapy, including 4 carrying BRCA1 mutation. The combination of olaparib with prexasertib was synergistic and produced significant tumor growth inhibition in an olaparib-resistant model and further augmented the degree and durability of response in the olaparib-sensitive model. HGSOC cell lines, including those with acquired PARP inhibitor resistance, were also sensitive to prexasertib, associated with induction of DNA damage and replication stress. Prexasertib also sensitized these cell lines to PARP inhibition and compromised both HR repair and replication fork stability. CONCLUSIONS: Prexasertib exhibits monotherapy activity in PARP inhibitor-resistant HGSOC PDX and cell line models, reverses restored HR and replication fork stability, and synergizes with PARP inhibition.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Cistadenocarcinoma Seroso/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Pirazinas/farmacologia , Pirazóis/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Reparo de DNA por Recombinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell Death Discov ; 4: 10, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29531807

RESUMO

Despite optimal chemotherapy, radiotherapy (RT), and/or surgery, non-small-cell lung carcinoma (NSCLC) remains the leading cause of cancer-related death in the US and worldwide. Thoracic RT, a mainstay in the treatment of locally advanced NSCLC, is often restricted in efficacy by a therapeutic index limited by sensitivity of tissues surrounding the malignancy. Therefore, radiosensitizers that can improve the therapeutic index are a vital unmet need. Inhibition of the NF-κB pathway is a proposed mechanism of radiosensitization. Here we demonstrate that inhibition of the canonical NF-κB pathway by dimethylaminoparthenolide (DMAPT) radiosensitizes NSCLC by blocking DNA double-strand break (DSB) repair. NF-κB inhibition results in significant impairment of both homologous recombination (HR) and non-homologous end joining (NHEJ), as well as reductions in ionizing radiation (IR)-induced DNA repair biomarkers. NF-κB inhibition by DMAPT shows preclinical potential for further investigation as a NSCLC radiosensitizer.

10.
Oncoscience ; 6(7-8): 349-350, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31608296
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA