Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 48(18): 5923-5932, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30624449

RESUMO

The replacement of the opposing nitrogen atoms in 1,4,8,11-tetraazacyclotetradecane (cyclam) with two sulfur atoms in 1,8-dithia-4,11-diazacyclotetradecane (dithiacyclam) enables the electrochemical reduction of protons and CO2via the corresponding nickel(ii) complex at more positive potentials. In addition, a 10-fold enhancement in the proton reduction rate of [Ni(dithiacyclam)]2+ relative to [Ni(cylcam)]2+ was observed. The study provides vital insight into Nature's choice of employing predominantly sulfur based ligand platforms in achieving biological proton and CO2 reductions.

2.
Dalton Trans ; 46(17): 5680-5688, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28220915

RESUMO

While bimetallic azacryptands are known to selectively coordinate CO2, there is little knowledge on how different substitution patterns of the azacryptand cage structure influence CO2 coordination. Stopped-flow UV-vis spectroscopy, electrochemical analysis and DFT calculations were performed on a series of dinickel azacryptands and showed different rates of CO2 coordination to the complexes. We herein present data showing that the different flexibility of the azacryptands is directly responsible for the difference in the CO2 uptake capability of dinickel azacryptand complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA