Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(10): 8327-8333, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391147

RESUMO

Delafossites, typically denoted by the formula ABO2, are a class of layered materials that exhibit a wide range of electronic and optical properties. Recently, the idea of modifying these delafossites into ordered kagome or honeycomb phases via strategic doping has emerged as a potential way to tailor these properties. In this study, we use high-throughput density functional theory calculations to explore many possible candidate kagome and honeycomb phases by considering dopants selected from the parent compounds of known ternary delafossite oxides from the inorganic crystal structure database. Our results indicate that while A-site in existing delafossites can host a limited range of elemental specifies, and display a low propensity for mixing or ordering, the oxide sub-units in the BO2 much more readily admit guest species. Our study identifies four candidate B-site kagome and fifteen candidate B-site honeycombs with a formation energy more than 50 meV f.u.-1 below other competing phases. The ability to predict and control the formation of these unique structures offers exciting opportunities in materials design, where innovative properties can be engineered through the selection of specific dopants. A number of these constitute novel correlated metals, which may be of interest for subsequent efforts in synthesis. These novel correlated metals may have significant implications for quantum computing, spintronics, and high-temperature superconductivity, thus inspiring future experimental synthesis and characterization of these proposed materials.

2.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37724730

RESUMO

We aim to improve upon the variational Monte Carlo (VMC) approach for excitations replacing the Jastrow factor by an auxiliary bosonic (AB) ground state and multiplying it by a fermionic component factor. The instantaneous change in imaginary time of an arbitrary excitation in the original interacting fermionic system is obtained by measuring observables via the ground-state distribution of walkers of an AB system that is subject to an auxiliary effective potential. The effective potential is used to (i) drive the AB system's ground-state configuration space toward the configuration space of the excitations of the original fermionic system and (ii) subtract from a diffusion Monte Carlo (DMC) calculation contributions that can be included in conventional approximations, such as mean-field and configuration interaction (CI) methods. In this novel approach, the AB ground state is treated statistically in DMC, whereas the fermionic component of the original system is expanded in a basis. The excitation energies of the fermionic eigenstates are obtained by sampling a fermion-boson coupling term on the AB ground state. We show that this approach can take advantage of and correct for approximate eigenstates obtained via mean-field calculations or truncated interactions. We demonstrate that the AB ground-state factor incorporates the correlations missed by standard Jastrow factors, further reducing basis truncation errors. Relevant parts of the theory have been tested in soluble model systems and exhibit excellent agreement with exact analytical data and CI and VMC approaches. In particular, for limited basis set expansions and sufficient statistics, AB approaches outperform CI and VMC in terms of basis size for the same systems. The implementation of this method in current codes, despite being demanding, will be facilitated by reusing procedures already developed for calculating ground-state properties with DMC and excitations with VMC.

3.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888761

RESUMO

Pseudopotential locality errors have hampered the applications of the diffusion Monte Carlo (DMC) method in materials containing transition metals, in particular oxides. We have developed locality error free effective core potentials, pseudo-Hamiltonians, for transition metals ranging from Cr to Zn. We have modified a procedure published by some of us in Bennett et al. [J. Chem. Theory Comput. 18, 828 (2022)]. We carefully optimized our pseudo-Hamiltonians and achieved transferability errors comparable to the best semilocal pseudopotentials used with DMC but without incurring in locality errors. Our pseudo-Hamiltonian set (named OPH23) bears the potential to significantly improve the accuracy of many-body-first-principles calculations in fundamental science research of complex materials involving transition metals.

4.
Phys Rev Lett ; 129(23): 235701, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563221

RESUMO

Understanding the behavior of defects in the complex oxides is key to controlling myriad ionic and electronic properties in these multifunctional materials. The observation of defect dynamics, however, requires a unique probe-one sensitive to the configuration of defects as well as its time evolution. Here, we present measurements of oxygen vacancy ordering in epitaxial thin films of SrCoO_{x} and the brownmillerite-perovskite phase transition employing x-ray photon correlation spectroscopy. These and associated synchrotron measurements and theory calculations reveal the close interaction between the kinetics and the dynamics of the phase transition, showing how spatial and temporal fluctuations of heterointerface evolve during the transformation process. The energetics of the transition are correlated with the behavior of oxygen vacancies, and the dimensionality of the transformation is shown to depend strongly on whether the phase is undergoing oxidation or reduction. The experimental and theoretical methods described here are broadly applicable to in situ measurements of dynamic phase behavior and demonstrate how coherence may be employed for novel studies of the complex oxides as enabled by the arrival of fourth-generation hard x-ray coherent light sources.

5.
J Chem Phys ; 153(10): 104111, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933304

RESUMO

An accurate treatment of effective core potentials (ECPs) requires care in continuum quantum Monte Carlo (QMC) methods. While most QMC studies have settled on the use of familiar non-local (NL) pseudopotentials with additional localization approximations, these approaches have been shown to result in moderate residual errors for some classes of molecular and solid state applications. In this work, we revisit an idea proposed early in the history of QMC ECPs that does not require localization approximations, namely, a differential class of potentials referred to as pseudo-Hamiltonians. We propose to hybridize NL potentials and pseudo-Hamiltonians to reduce residual non-locality of existing potentials. We derive an approach to recast pseudopotentials for 3d elements as hybrid pseudo-Hamiltonians with optimally reduced NL energy. We demonstrate the fidelity of the hybrid potentials by studying atomic ionization potentials of Ti and Fe and the binding properties of TiO and FeO molecules with diffusion Monte Carlo (DMC). We show that localization errors have been reduced relative to potentials with the same NL channels for Sc-Zn by considering the DMC energy change with respect to the choice of approximate localization. While localization error decreases proportionate to the reduced NL energy without a Jastrow, with a Jastrow, the degree of reduction decreases at higher filling of the d-shell. Our results suggest that a subset of existing ECPs may be recast in this hybrid form to reduce the DMC localization error. They also point to the prospect of further reducing this error by generating ECPs within this hybrid form from the start.

6.
J Chem Phys ; 152(17): 174105, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384844

RESUMO

We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing the accuracy. Advances in real space methods include techniques for accurate computation of bandgaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods, including GW and density functional based techniques. To provide an improved foundation for these calculations, we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK.

7.
J Chem Phys ; 148(4): 044110, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29390850

RESUMO

Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.

8.
J Chem Phys ; 148(21): 214706, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884054

RESUMO

We have studied the structural stability of monolayer and bilayer arsenene (As) in the buckled (b) and washboard (w) phases with diffusion quantum Monte Carlo (DMC) and density functional theory (DFT) calculations. DMC yields cohesive energies of 2.826(2) eV/atom for monolayer b-As and 2.792(3) eV/atom for w-As. In the case of bilayer As, DMC and DFT predict that AA-stacking is the more stable form of b-As, while AB is the most stable form of w-As. The DMC layer-layer binding energies for b-As-AA and w-As-AB are 30(1) and 53(1) meV/atom, respectively. The interlayer separations were estimated with DMC at 3.521(1) Å for b-As-AA and 3.145(1) Å for w-As-AB. A comparison of DMC and DFT results shows that the van der Waals density functional method yields energetic properties of arsenene close to DMC, while the DFT + D3 method closely reproduced the geometric properties from DMC. The electronic properties of monolayer and bilayer arsenene were explored with various DFT methods. The bandgap values vary significantly with the DFT method, but the results are generally qualitatively consistent. We expect the present work to be useful for future experiments attempting to prepare multilayer arsenene and for further development of DFT methods for weakly bonded systems.

9.
J Chem Phys ; 147(2): 024102, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28711049

RESUMO

The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. We estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc-Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range of fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc-Zn. The recently generated pseudopotentials of Krogel et al. [Phys. Rev. B 93, 075143 (2016)] reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. [J. Chem. Phys. 129, 164115 (2008)] by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. For the Sc-Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.

10.
J Chem Phys ; 147(3): 034701, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28734312

RESUMO

The equations of state, formation energy, and migration energy barrier of the oxygen vacancy in SrFeO3 and LaFeO3 were calculated with the diffusion quantum Monte Carlo (DMC) method. Calculations were also performed with various Density Functional Theory (DFT) approximations for comparison. DMC reproduces the measured cohesive energies of these materials with errors below 0.23(5) eV and the structural properties within 1% of the experimental values. The DMC formation energies of the oxygen vacancy in SrFeO3 and LaFeO3 under oxygen-rich conditions are 1.3(1) and 6.24(7) eV, respectively. Similar calculations with semi-local DFT approximations for LaFeO3 yielded vacancy formation energies 1.5 eV lower. Comparison of charge density evaluated with DMC and DFT approximations shows that DFT tends to overdelocalize the electrons in defected SrFeO3 and LaFeO3. Calculations with DMC and local density approximation yield similar vacancy migration energy barriers, indicating that steric/electrostatic effects mainly determine migration barriers in these materials.

11.
J Chem Phys ; 147(17): 174703, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117688

RESUMO

MnNiO3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Monte Carlo study of the bulk properties of MnNiO3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å3, which compares well to the experimental value of 94.4 Å3. A bulk modulus of 217 GPa is predicted for MnNiO3. We rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO3.

12.
J Chem Phys ; 144(17): 174707, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155647

RESUMO

We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc2O3, Y2O3, and La2O3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local, semi-local, and hybrid Density Functional Theory (DFT) approximations as well as with experimental measurements. The DMC method yields cohesive energies for these oxides with a mean absolute deviation from experimental measurements of 0.18(2) eV, while with local, semi-local, and hybrid DFT approximations, the deviation is 3.06, 0.94, and 1.23 eV, respectively. For lattice constants, the mean absolute deviations in DMC, local, semi-local, and hybrid DFT approximations are 0.017(1), 0.07, 0.05, and 0.04 Å, respectively. DMC is a highly accurate method, outperforming the DFT approximations in describing the cohesive energies and structural parameters of these binary oxides.

13.
J Chem Phys ; 143(16): 164710, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520546

RESUMO

We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.

14.
J Chem Phys ; 142(16): 164705, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25933782

RESUMO

We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory (DFT) approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.

15.
J Chem Phys ; 140(7): 074103, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24559334

RESUMO

A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.

16.
J Chem Phys ; 141(8): 084710, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25173033

RESUMO

To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.

17.
J Chem Phys ; 141(16): 164706, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362331

RESUMO

We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO2. We find that formation of impurity states results in changes on the valency of Co in LiCoO2. Variation of the Co U shifts the energy of the impurity state, resulting in energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO2.

18.
Sci Rep ; 13(1): 6703, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185382

RESUMO

The properties of [Formula: see text] (M: 3d transition metal) perovskite crystals are significantly dependent on point defects, whether introduced accidentally or intentionally. The most studied defects in La-based perovskites are the oxygen vacancies and doping impurities on the La and M sites. Here, we identify that intrinsic antisite defects, the replacement of La by the transition metal, M, can be formed under M-rich and O-poor growth conditions, based on results of an accurate many-body ab initio approach. Our fixed-node diffusion Monte Carlo (FNDMC) calculations of [Formula: see text] ([Formula: see text], Fe, and Co) find that such antisite defects can have low formation energies and are magnetized. Complementary density functional theory (DFT)-based calculations show that Mn antisite defects in [Formula: see text] may cause the p-type electronic conductivity. These features could affect spintronics, redox catalysis, and other broad applications. Our bulk validation studies establish that FNDMC reproduces the antiferromagnetic state of [Formula: see text], whereas DFT with PBE (Perdew-Burke-Ernzerhof), SCAN (strongly constrained and appropriately normed), and the LDA+U (local density approximation with Coulomb U) functionals all favor ferromagnetic states, at variance with experiment.

19.
J Chem Theory Comput ; 18(2): 828-839, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35001633

RESUMO

Practical applications of the real-space diffusion Monte Carlo (DMC) method require the removal of core electrons, where currently localization approximations of semilocal potentials are generally used in the projector. Accurate calculations of complex solids and large molecules demand minimizing the impact of approximated atomic cores. Prior works have shown that the errors from such approximations can be sizable in both finite and periodic systems. In this work, we show that a class of differential pseudopotentials, known as pseudo-Hamiltonians, can be constructed for the 3d transition metal atoms, entirely removing the need for any localization scheme in the DMC projector. As a proof of principle, we demonstrate the approach for the case of Co. In order to minimize errors in the pseudo-Hamiltonian at the many-body level, we generalize the recently proposed correlation-consistent pseudopotential generation scheme to successively close semilocal representations of the differential potentials. Our generation scheme successfully produces potentials tailored specifically for real space projector quantum Monte Carlo methods with low error at the many-body level, i.e., with many-body scattering properties very close to relativistic all-electron results. In particular, we show that the agreement with respect to atomic and molecular quantities reach chemical accuracy in many cases─on par with the most accurate semilocal pseudopotentials available. Further, our pseudo-Hamiltonian generation scheme utilizes standard quantum chemistry codes designed only to work with semilocal pseudopotentials, enabling straightforward generation of pseudo-Hamiltonians for additional elements in future works.

20.
Dalton Trans ; 51(40): 15361-15369, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36148548

RESUMO

A combination of 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) and density functional theory (DFT) were used to study the ordering of F atoms in Pb2Ti4O9F2. This analysis revealed that F atoms predominantly occupy two of the six available inequivalent sites in a ratio of 73 : 27. DFT-based calculations explained the preference of F occupation on these sites and quantitatively reproduced the experimental occupation ratio, independent of the choice of functional. We concluded that the Pb atom's 6s2 lone pair may play a role (∼0.1 eV per f.u.) in determining the majority and minority F occupation sites with partial density of states and crystal orbital Hamiltonian population analyses applied to the DFT wave functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA