RESUMO
In this work, we investigated the effects of a single covalent link between hydrogen bond donor species on the behavior of deep eutectic solvents (DESs) and shed light on the resulting interactions at molecular scale that influence the overall physical nature of the DES system. We have compared sugar-based DES mixtures, 1:2 choline chloride/glucose [DES(g)] and 1:1 choline chloride/trehalose [DES(t)]. Trehalose is a disaccharide composed of two glucose units that are connected by an α-1,4-glycosidic bond, thus making it an ideal candidate for comparison with glucose containing DES(g). The differential scanning calorimetric analysis of these chemically close DES systems revealed significant difference in their phase transition behavior. The DES(g) exhibited a glass transition temperature of -58 °C and behaved like a fluid at higher temperatures, whereas DES(t) exhibited marginal phase change behavior at -11 °C and no change in the phase behavior at higher temperatures. The simulations revealed that the presence of the glycosidic bond between sugar units in DES(t) hindered free movement of sugar units in trehalose, thus reducing the number of interactions with choline chloride compared to free glucose molecules in DES(g). This was further confirmed using quantum theory of atoms in molecule analysis that involved determination of bond critical points (BCPs) using Laplacian of electron density. The analysis revealed a significantly higher number of BCPs between choline chloride and sugar in DES(g) compared to DES(t). The DES(g) exhibited a higher amount of charge transfer between the choline cation and sugar, and better interaction energy and enthalpy of formation compared to DES(t). This is a result of the ability of free glucose molecules to completely surround choline chloride in DES(g) and form a higher number of interactions. The entropy of formation for DES(t) was slightly higher than that for DES(g), which is a result of fewer interactions between trehalose and choline chloride. In summary, the presence of the glycosidic bond between the sugar units in trehalose limited their movement, thus resulting in fewer interactions with choline chloride. This limited movement in turn diminishes the ability of the hydrogen bond donor to disrupt the molecular packing within the lattice structure of the hydrogen bond acceptor (and vice versa), a crucial factor that lowers the melting point of DES mixtures. This inability to move due to the presence of the glycosidic bond in trehalose significantly influences the physical state of the DES(t) system, making it behave like a semi-solid material, whereas DES(g) behaves like a liquid material at room temperature.
RESUMO
Drawing inspiration from nature's own intricate designs, synthetic multimaterial structures have the potential to offer properties and functionality that exceed those of the individual components. However, several contemporary hurdles, from a lack of efficient chemistries to processing constraints, preclude the rapid and precise manufacturing of such materials. Herein, the development of a photocurable resin comprising color-selective initiators is reported, triggering disparate polymerization mechanisms between acrylate and thiol functionality. Exposure of the resin to UV light (365 nm) leads to the formation of a rigid, highly crosslinked network via a radical chain-growth mechanism, while violet light (405 nm) forms a soft, lightly crosslinked network via an anionic step-growth mechanism. The efficient photocurable resin is employed in multicolor digital light processing 3D printing to provide structures with moduli spanning over two orders of magnitude. Furthermore, local intensity (i.e., grayscale) control enables the formation of programmable stiffness gradients with ≈150× change in modulus occurring across sharp (≈200 µm) and shallow (≈9 mm) interfaces, mimetic of the human knee entheses and squid beaks, respectively. This study provides composition-processing-property relationships to inform advanced manufacturing of next-generation multimaterial objects having a myriad of applications from healthcare to education.
RESUMO
Multimaterial three-dimensional (3D) printing of objects with spatially tunable thermomechanical properties and shape-memory behavior provides an attractive approach toward programmable "smart" plastics with applications in soft robotics and electronics. To date, digital light processing 3D printing has emerged as one of the fastest manufacturing methods that maintains high precision and resolution. Despite the common utility of semicrystalline polymers in stimuli-responsive materials, few reports exist whereby such polymers have been produced via digital light processing (DLP) 3D printing. Herein, two commodity long-alkyl chain acrylates (C18, stearyl and C12, lauryl) and mixtures therefrom are systematically examined as neat resin components for DLP 3D printing of semicrystalline polymer networks. Tailoring the stearyl/lauryl acrylate ratio results in a wide breadth of thermomechanical properties, including tensile stiffness spanning three orders of magnitude and temperatures from below room temperature (2 °C) to above body temperature (50 °C). This breadth is attributed primarily to changes in the degree of crystallinity. Favorably, the relationship between resin composition and the degree of crystallinity is quadratic, making the thermomechanical properties reproducible and easily programmable. Furthermore, the shape-memory behavior of 3D-printed objects upon thermal cycling is characterized, showing good fatigue resistance and work output. Finally, multimaterial 3D-printed structures with vertical gradation in composition are demonstrated where concomitant localization of thermomechanical properties enables multistage shape-memory and strain-selective behavior. The present platform represents a promising route toward customizable actuators for biomedical applications.