Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142163

RESUMO

Alterations of gut microbiota have been identified before clinical manifestation of type 1 diabetes (T1D). To identify the associations amongst gut microbiome profile, metabolism and disease markers, the 16S rRNA-based microbiota profiling and 1H-NMR metabolomic analysis were performed on stool samples of 52 T1D patients at onset, 17 T1D siblings and 57 healthy subjects (CTRL). Univariate, multivariate analyses and classification models were applied to clinical and -omic integrated datasets. In T1D patients and their siblings, Clostridiales and Dorea were increased and Dialister and Akkermansia were decreased compared to CTRL, while in T1D, Lachnospiraceae were higher and Collinsella was lower, compared to siblings and CTRL. Higher levels of isobutyrate, malonate, Clostridium, Enterobacteriaceae, Clostridiales, Bacteroidales, were associated to T1D compared to CTRL. Patients with higher anti-GAD levels showed low abundances of Roseburia, Faecalibacterium and Alistipes and those with normal blood pH and low serum HbA1c levels showed high levels of purine and pyrimidine intermediates. We detected specific gut microbiota profiles linked to both T1D at the onset and to diabetes familiarity. The presence of specific microbial and metabolic profiles in gut linked to anti-GAD levels and to blood acidosis can be considered as predictive biomarker associated progression and severity of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Biomarcadores/metabolismo , Clostridiales/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Isobutiratos , Malonatos , Purinas , Pirimidinas , RNA Ribossômico 16S/genética
2.
Acta Neuropathol ; 142(3): 537-564, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302498

RESUMO

Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Criança , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas , Prognóstico , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Proteína 3 Supressora da Sinalização de Citocinas/antagonistas & inibidores
3.
Liver Int ; 41(6): 1320-1334, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713524

RESUMO

BACKGROUND & AIM: Sarcopenia is frequent in cirrhosis and is associated with unfavourable outcomes. The role of the gut-liver-muscle axis in this setting has been poorly investigated. The aim of this study was to identify gut microbiota, metabolic and inflammatory signatures associated with sarcopenia in cirrhotic patients. METHODS: Fifty cirrhotic patients assessed for the presence of sarcopenia by the quantification of muscle mass and strength were compared with age- and sex-matched controls. A multiomic analysis, including gut microbiota composition and metabolomics, serum myokines and systemic and intestinal inflammatory mediators, was performed. RESULTS: The gut microbiota of sarcopenic cirrhotic patients was poor in bacteria associated with physical function (Methanobrevibacter, Prevotella and Akkermansia), and was enriched in Eggerthella, a gut microbial marker of frailty. The abundance of potentially pathogenic bacteria, such as Klebsiella, was also increased, to the detriment of autochthonous ones. Sarcopenia was associated with elevated serum levels of pro-inflammatory mediators and of fibroblast growth factor 21 (FGF21) in cirrhotic patients. Gut microbiota metabolic pathways involved in amino acid, protein and branched-chain amino acid metabolism were up-regulated, in addition to ethanol, trimethylamine and dimethylamine production. Correlation networks and clusters of variables associated with sarcopenia were identified, including one centred on Klebsiella/ethanol/FGF21/Eggerthella/Prevotella. CONCLUSIONS: Alterations in the gut-liver-muscle axis are associated with sarcopenia in patients with cirrhosis. Detrimental but also compensatory functions are involved in this complex network.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Sarcopenia , Humanos , Cirrose Hepática/complicações
4.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562104

RESUMO

Food allergy (FA) and, in particular, IgE-mediated cow's milk allergy is associated with compositional and functional changes of gut microbiota. In this study, we compared the gut microbiota of cow's milk allergic (CMA) infants with that of cow's milk sensitized (CMS) infants and Healthy controls. The effect of the intake of a mixture of Bifidobacterium longum subsp. longum BB536, Bifidobacterium breve M-16V and Bifidobacterium longum subsp. infantis M-63 on gut microbiota modulation of CMA infants and probiotic persistence was also investigated. Gut microbiota of CMA infants resulted to be characterized by a dysbiotic status with a prevalence of some bacteria as Haemophilus, Klebsiella, Prevotella, Actinobacillus and Streptococcus. Among the three strains administered, B.longum subsp. infantis colonized the gastrointestinal tract and persisted in the gut microbiota of infants with CMA for 60 days. This colonization was associated with perturbations of the gut microbiota, specifically with the increase of Akkermansia and Ruminococcus. Multi-strain probiotic formulations can be studied for their persistence in the intestine by monitoring specific bacterial probes persistence and exploiting microbiota profiling modulation before the evaluation of their therapeutic effects.


Assuntos
Bifidobacterium breve/metabolismo , Bifidobacterium longum subspecies infantis/metabolismo , Bifidobacterium/metabolismo , Microbioma Gastrointestinal/fisiologia , Hipersensibilidade a Leite/terapia , Probióticos/uso terapêutico , Animais , Aleitamento Materno , Pré-Escolar , Disbiose/microbiologia , Feminino , Humanos , Imunoglobulina E/imunologia , Lactente , Masculino , Leite/imunologia , Hipersensibilidade a Leite/microbiologia
5.
J Transl Med ; 18(1): 49, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014010

RESUMO

BACKGROUND: Despite the efficacy of immune checkpoint inhibitors (ICIs) only the 20-30% of treated patients present long term benefits. The metabolic changes occurring in the gut microbiota metabolome are herein proposed as a factor potentially influencing the response to immunotherapy. METHODS: The metabolomic profiling of gut microbiota was characterized in 11 patients affected by non-small cell lung cancer (NSCLC) treated with nivolumab in second-line treatment with anti-PD-1 nivolumab. The metabolomics analyses were performed by GC-MS/SPME and 1H-NMR in order to detect volatile and non-volatile metabolites. Metabolomic data were processed by statistical profiling and chemometric analyses. RESULTS: Four out of 11 patients (36%) presented early progression, while the remaining 7 out of 11 (64%) presented disease progression after 12 months. 2-Pentanone (ketone) and tridecane (alkane) were significantly associated with early progression, and on the contrary short chain fatty acids (SCFAs) (i.e., propionate, butyrate), lysine and nicotinic acid were significantly associated with long-term beneficial effects. CONCLUSIONS: Our preliminary data suggest a significant role of gut microbiota metabolic pathways in affecting response to immunotherapy. The metabolic approach could be a promising strategy to contribute to the personalized management of cancer patients by the identification of microbiota-linked "indicators" of early progressor and long responder patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica
6.
Hepatology ; 69(1): 107-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29665135

RESUMO

The gut-liver axis plays a pivotal role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), which is the third leading cause of hepatocellular carcinoma (HCC) worldwide. However, the link between gut microbiota and hepatocarcinogenesis remains to be clarified. The aim of this study was to explore what features of the gut microbiota are associated with HCC in patients with cirrhosis and NAFLD. A consecutive series of patients with NAFLD-related cirrhosis and HCC (group 1, 21 patients), NAFLD-related cirrhosis without HCC (group 2, 20 patients), and healthy controls (group 3, 20 patients) was studied for gut microbiota profile, intestinal permeability, inflammatory status, and circulating mononuclear cells. We finally constructed a model depicting the most relevant correlations among these features, possibly involved in hepatocarcinogenesis. Patients with HCC showed increased levels of fecal calprotectin, while intestinal permeability was similar to patients with cirrhosis but without HCC. Plasma levels of interleukin 8 (IL8), IL13, chemokine (C-C motif) ligand (CCL) 3, CCL4, and CCL5 were higher in the HCC group and associated with an activated status of circulating monocytes. The fecal microbiota of the whole group of patients with cirrhosis showed higher abundance of Enterobacteriaceae and Streptococcus and a reduction in Akkermansia. Bacteroides and Ruminococcaceae were increased in the HCC group, while Bifidobacterium was reduced. Akkermansia and Bifidobacterium were inversely correlated with calprotectin concentration, which in turn was associated with humoral and cellular inflammatory markers. A similar behavior was also observed for Bacteroides. Conclusion: Our results suggest that in patients with cirrhosis and NAFLD the gut microbiota profile and systemic inflammation are significantly correlated and can concur in the process of hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/congênito , Carcinoma Hepatocelular/microbiologia , Microbioma Gastrointestinal , Inflamação/complicações , Cirrose Hepática/complicações , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/microbiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Food Microbiol ; 67: 67-75, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28648295

RESUMO

To investigate the prevalence of protozoan contamination by Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii and Cyclospora cayetanensis, in 'ready to eat' (RTE) salads on sale in Italy, 648 packages were purchased from industrial and local brands. Nine individual packages from each brand were collected per month, pooled and subjected to microscopy and molecular analyses. Microscopic examination of 864 slides detected Cryptosporidium spp. but also Blastocystis hominis and Dientamoeba fragilis. Molecular tools identified G. duodenalis assemblage A, Cryptosporidium parvum and Cryptosporidium ubiquitum, T. gondii Type I and C. cayetanensis. B. hominis and D. fragilis were also molecularly confirmed. The overall prevalence of each protozoan species was 0.6% for G. duodenalis, 0.8% for T. gondii, 0.9% for Cryptosporidium spp., and 1.3% for C. cayetanensis, while prevalence for B. hominis was 0.5% and for D. fragilis 0.2%. Microscopy and/or molecular tools revealed that 4.2% of the samples were contaminated by at least one protozoan species, and 0.6% of samples presented contamination by two protozoan species, with a number of oocysts ranging from 62 to 554 per g of vegetable matter for T. gondii, and 46 to 1.580 for C. cayetanensis. This is Europe's first large-scale study on the presence of protozoans in packaged salads, and shows that RTE sanitation processes do not guarantee a product free from protozoans of fecal origin.


Assuntos
Cryptosporidium/isolamento & purificação , Cyclospora/isolamento & purificação , Fast Foods/parasitologia , Contaminação de Alimentos/estatística & dados numéricos , Toxoplasma/isolamento & purificação , Verduras/parasitologia , Cryptosporidium/genética , Cryptosporidium/crescimento & desenvolvimento , Cyclospora/genética , Cyclospora/crescimento & desenvolvimento , DNA de Protozoário , Contaminação de Alimentos/análise , Itália , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento
8.
Inflamm Bowel Dis ; 30(4): 529-537, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37696680

RESUMO

BACKGROUND: Primary sclerosing cholangitis (PSC) is a chronic, fibroinflammatory, cholestatic liver disease of unknown etiopathogenesis, often associated with inflammatory bowel diseases. Recent evidence ascribes, together with immunologic and environmental components, a significant role to the intestinal microbiota or its molecules in the PSC pathogenesis. METHODS: By metagenomic sequencing of 16S rRNA and ITS2 loci, we describe the fecal microbiota and mycobiota of 26 pediatric patients affected by PSC and concomitant ulcerative colitis (PSC-UC), 27 patients without PSC but with UC (UC), and 26 healthy subjects (CTRLs). RESULTS: Compared with CTRL, the bacterial and fungal gut dysbiosis was evident for both PSC-UC and UC groups; in particular, Streptococcus, Saccharomyces, Sporobolomyces, Tilletiopsis, and Debaryomyces appeared increased in PSC-UC, whereas Klebsiella, Haemophilus, Enterococcus Collinsella, Piptoporus, Candida, and Hyphodontia in UC. In both patient groups, Akkermansia, Bacteroides, Parabacteroides, Oscillospira, Meyerozyma and Malassezia were decreased. Co-occurrence analysis evidenced the lowest number of nodes and edges for fungi networks compared with bacteria. Finally, we identified a specific patient profile, based on liver function tests, bacterial and fungal signatures, that is able to distinguish PSC-UC from UC patients. CONCLUSIONS: We describe the gut microbiota and mycobiota dysbiosis associated to PSC-UC disease. Our results evidenced a gut imbalance, with the reduction of gut commensal microorganisms with stated anti-inflammatory properties (ie, Akkermansia, Bacteroides, Parabacteroides, Oscillospira, Meyerozyma, and Malassezia) and the increase of pathobionts (ie, Streptococcus, Saccharomyces, and Debaryomyces) that could be involved in PSC progression. Altogether, these events may concur in the pathophysiology of PSC in the framework of UC.


In this study, we report the gut microbiota and mycobiota dysbiosis in pediatric patients affected by primary sclerosing cholangitis (PSC) associated with ulcerative colitis (UC), with an increase in pro-inflammatory pathobionts and a reduction in anti-inflammatory commensals.


Assuntos
Colangite Esclerosante , Colite Ulcerativa , Microbioma Gastrointestinal , Humanos , Criança , Colite Ulcerativa/complicações , Colangite Esclerosante/complicações , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Bacteroidetes , Itália
9.
Front Cell Infect Microbiol ; 14: 1366192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779566

RESUMO

Background: Ulcerative colitis (UC) is a multifactorial chronic inflammatory bowel disease (IBD) that affects the large intestine with superficial mucosal inflammation. A dysbiotic gut microbial profile has been associated with UC. Our study aimed to characterize the UC gut bacterial, fungal, and metabolic fingerprints by omic approaches. Methods: The 16S rRNA- and ITS2-based metataxonomics and gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) metabolomic analysis were performed on stool samples of 53 UC patients and 37 healthy subjects (CTRL). Univariate and multivariate approaches were applied to separated and integrated omic data, to define microbiota, mycobiota, and metabolic signatures in UC. The interaction between gut bacteria and fungi was investigated by network analysis. Results: In the UC cohort, we reported the increase of Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, Gemellaceae, and phenylethyl alcohol; and we also reported the decrease of Akkermansia; Ruminococcaceae; Ruminococcus; Gemmiger; Methanobrevibacter; Oscillospira; Coprococus; Christensenellaceae; Clavispora; Vishniacozyma; Quambalaria; hexadecane; cyclopentadecane; 5-hepten-2-ol, 6 methyl; 3-carene; caryophyllene; p-Cresol; 2-butenal; indole, 3-methyl-; 6-methyl-3,5-heptadiene-2-one; 5-octadecene; and 5-hepten-2-one, 6 methyl. The integration of the multi-omic data confirmed the presence of a distinctive bacterial, fungal, and metabolic fingerprint in UC gut microbiota. Moreover, the network analysis highlighted bacterial and fungal synergistic and/or divergent interkingdom interactions. Conclusion: In this study, we identified intestinal bacterial, fungal, and metabolic UC-associated biomarkers. Furthermore, evidence on the relationships between bacterial and fungal ecosystems provides a comprehensive perspective on intestinal dysbiosis and ecological interactions between microorganisms in the framework of UC.


Assuntos
Bactérias , Colite Ulcerativa , Fezes , Fungos , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal , Metabolômica , RNA Ribossômico 16S , Humanos , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Masculino , Adulto , Feminino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/genética , Pessoa de Meia-Idade , Metabolômica/métodos , RNA Ribossômico 16S/genética , Fezes/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Disbiose/microbiologia , Metaboloma , Idoso , Adulto Jovem , Microextração em Fase Sólida , Micobioma , Multiômica
10.
Front Microbiol ; 14: 1295459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274771

RESUMO

The oceans cover over 70% of our planet, hosting a biodiversity of tremendous wealth. Sponges are one of the major ecosystem engineers on the seafloor, providing a habitat for a wide variety of species to be considered a good source of bioactive compounds. In this study, a metataxonomic approach was employed to describe the bacterial communities of the sponges collected from Faro Lake (Sicily) and Porto Paone (Gulf of Naples). Morphological analysis and amplification of the conserved molecular markers, including 18S and 28S (RNA ribosomal genes), CO1 (mitochondrial cytochrome oxidase subunit 1), and ITS (internal transcribed spacer), allowed the identification of four sponges. Metataxonomic analysis of sponges revealed a large number of amplicon sequence variants (ASVs) belonging to the phyla Proteobacteria, Cloroflexi, Dadabacteria, and Poribacteria. In particular, Myxilla (Myxilla) rosacea and Clathria (Clathria) toxivaria displayed several classes such as Alphaproteobacteria, Dehalococcoidia, Gammaproteobacteria, Cyanobacteria, and Bacteroidia. On the other hand, the sponges Ircinia oros and Cacospongia mollior hosted bacteria belonging to the classes Dadabacteriia, Anaerolineae, Acidimicrobiia, Nitrospiria, and Poribacteria. Moreover, for the first time, the presence of Rhizobiaceae bacteria was revealed in the sponge M. (Myxilla) rosacea, which was mainly associated with soil and plants and involved in biological nitrogen fixation.

11.
Sci Rep ; 13(1): 9797, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328513

RESUMO

Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Síndrome de Williams , Humanos , Síndrome de Williams/genética , Síndrome de Williams/diagnóstico , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Qualidade de Vida , Gastroenteropatias/complicações
12.
Front Immunol ; 14: 1197630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680638

RESUMO

Introduction: Immunotherapy with checkpoint inhibitors is an efficient treatment for metastatic melanoma. Development of vitiligo upon immunotherapy represents a specific immune-related adverse event (irAE) diagnosed in 15% of patients and associated with a positive clinical response. Therefore, a detailed characterization of immune cells during vitiligo onset in melanoma patients would give insight into the immune mechanisms mediating both the irAE and the anti-tumor response. Methods: To better understand these aspects, we analyzed T cell subsets from peripheral blood of metastatic melanoma patients undergoing treatment with anti-programmed cell death protein (PD)-1 antibodies. To deeply characterize the antitumoral T cell response concomitant to vitiligo onset, we analyzed T cell content in skin biopsies collected from melanoma patients who developed vitiligo. Moreover, to further characterize T cells in vitiligo skin lesion of melanoma patients, we sequenced T cell receptor (TCR) of cells derived from biopsies of vitiligo and primary melanoma of the same patient. Results and discussion: Stratification of patients for developing or not developing vitiligo during anti-PD-1 therapy revealed an association between blood reduction of CD8-mucosal associated invariant T (MAIT), T helper (h) 17, natural killer (NK) CD56bright, and T regulatory (T-reg) cells and vitiligo onset. Consistently with the observed blood reduction of Th17 cells in melanoma patients developing vitiligo during immunotherapy, we found high amount of IL-17A expressing cells in the vitiligo skin biopsy, suggesting a possible migration of Th17 cells from the blood into the autoimmune lesion. Interestingly, except for a few cases, we found different TCR sequences between vitiligo and primary melanoma lesions. In contrast, shared TCR sequences were identified between vitiligo and metastatic tissues of the same patient. These data indicate that T cell response against normal melanocytes, which is involved in vitiligo onset, is not typically mediated by reactivation of specific T cell clones infiltrating primary melanoma but may be elicited by T cell clones targeting metastatic tissues. Altogether, our data indicate that anti-PD-1 therapy induces a de novo immune response, stimulated by the presence of metastatic cells, and composed of different T cell subtypes, which may trigger the development of vitiligo and the response against metastatic tumor.


Assuntos
Melanoma , Segunda Neoplasia Primária , Vitiligo , Humanos , Melanoma/tratamento farmacológico , Imunoterapia , Melanócitos
13.
EMBO Mol Med ; 15(12): e18199, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38037472

RESUMO

Brain tumors are the leading cause of cancer-related death in children. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of pediatric brain cancers are limited and hard to establish. We present a protocol that enables efficient generation, expansion, and biobanking of pediatric brain cancer organoids. Utilizing our protocol, we have established patient-derived organoids (PDOs) from ependymomas, medulloblastomas, low-grade glial tumors, and patient-derived xenograft organoids (PDXOs) from medulloblastoma xenografts. PDOs and PDXOs recapitulate histological features, DNA methylation profiles, and intratumor heterogeneity of the tumors from which they were derived. We also showed that PDOs can be xenografted. Most interestingly, when subjected to the same routinely applied therapeutic regimens, PDOs respond similarly to the patients. Taken together, our study highlights the potential of PDOs and PDXOs for research and translational applications for personalized medicine.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Encefálicas , Humanos , Criança , Xenoenxertos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Organoides/patologia
14.
Nat Commun ; 14(1): 3423, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296093

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy may achieve long-lasting remission in patients with B-cell malignancies not responding to conventional therapies. However, potentially severe and hard-to-manage side effects, including cytokine release syndrome (CRS), neurotoxicity and macrophage activation syndrome, and the lack of pathophysiological experimental models limit the applicability and development of this form of therapy. Here we present a comprehensive humanized mouse model, by which we show that IFNγ neutralization by the clinically approved monoclonal antibody, emapalumab, mitigates severe toxicity related to CAR-T cell therapy. We demonstrate that emapalumab reduces the pro-inflammatory environment in the model, thus allowing control of severe CRS and preventing brain damage, characterized by multifocal hemorrhages. Importantly, our in vitro and in vivo experiments show that IFNγ inhibition does not affect the ability of CD19-targeting CAR-T (CAR.CD19-T) cells to eradicate CD19+ lymphoma cells. Thus, our study provides evidence that anti-IFNγ treatment might reduce immune related adverse effect without compromising therapeutic success and provides rationale for an emapalumab-CAR.CD19-T cell combination therapy in humans.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Imunoterapia Adotiva/efeitos adversos , Linfócitos B , Interferon gama , Neoplasias/etiologia , Síndrome da Liberação de Citocina , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos
15.
Microorganisms ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208921

RESUMO

In this study, the onset and shaping of the salivary and gut microbiota in healthy newborns during the first period of life has been followed, evaluating the impact of salivary microbiota on the development of early fecal microbial communities. The microbiota of 80 salivary and 82 fecal samples that were collected from healthy newborns in the first six months of life, was investigated by 16S rRNA amplicon profiling. The microbial relationship within and between the saliva and gut ecosystems was determined by correlation heatmaps and co-occurrence networks. Streptococcus and Staphylococcus appeared as early commensals in the salivary microbiota, dominating this ecosystem through the time, while Fusobacterium, Prevotella, Porphyromonas, Granulicatella, and Veillonella were late colonizers. Enterobacteriaceae, Staphylococcus and Streptococcus were gut pioneers, followed by the anaerobic Bifidobacterium, Veillonella, Eggerthella, and Bacteroides. Streptococcus, Staphylococcus, and Veillonella were shared by the gut and saliva ecosystems. The saliva and gut microbiota seem to evolve independently, driven by local adaptation strategies, except for the oral Streptococcus and Veillonella that are involved in gut microbiota development as seeding species. This study offers a piece of knowledge on how the oral microbiota may affect the gut microbiota in healthy newborns, shedding light onto new microbial targets for the development of therapies for early life intestinal dysbiosis.

16.
Hepatol Commun ; 6(6): 1492-1501, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35261212

RESUMO

The gut microbiota is a well-known prognostic factor and a modulator of treatment sensitivity in patients with cancers treated with immune checkpoint inhibitors. However, data on hepatocellular carcinoma (HCC) are lacking. This study aimed to evaluate the prognostic role of the gut microbiota and changes produced by immunotherapy on the intestinal environment in patients with cirrhosis and HCC. Eleven patients treated with Tremelimumab and/or Durvalumab were included in the analysis. All study participants underwent gut microbiota profiling, quantification of fecal calprotectin, serum levels of zonulin-1, lipopolysaccharide binding protein (LBP), and programmed death-ligand 1 (PD-L1) at baseline and at each treatment cycle until the third cycle, then every three cycles until treatment discontinuation or last visit. The 6 patients who achieved disease control (DC) showed lower pretreatment fecal calprotectin (median, 12.5; interquartile range [IQR], 5-29 vs. median, 116; IQR, 59-129 µg/g; P = 0.047) and PD-L1 serum levels (median, 0.08; IQR, 0.07-0.09 vs. median, 1.04; IQR, 0.17-1.95 ng/mL; P = 0.02) than nonresponders. The relative abundance of Akkermansia (log2 fold change [FC], 2.72; adjusted P [Padj] = 0.012) was increased, whereas that of Enterobacteriaceae (log2 FC, -2.34; Padj = 0.04) was reduced in the DC group. During treatment, fecal calprotectin showed a temporal evolution opposite to the Akkermansia to Enterobacteriaceae ratio and gut microbiota alpha diversity, but similar to zonulin-1 and LBP. Bifidobacterium had a stable behavior in patients with a long follow-up, while Akkermansia was more variable. Akkermansia and Bifidobacterium showed similar temporal patterns and causative relationships with Prevotella, Veillonella, Ruminococcus, Roseburia, Lachnospira, Faecalibacterium, and Clostridium. Conclusion: A favorable composition of the gut microbiota and low intestinal inflammation are associated with achieving DC. The intestinal environment changes dynamically during therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Akkermansia , Antígeno B7-H1 , Carcinoma Hepatocelular/tratamento farmacológico , Disbiose/microbiologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Complexo Antígeno L1 Leucocitário , Neoplasias Hepáticas/tratamento farmacológico
17.
Oncol Rep ; 48(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36321792

RESUMO

Novel therapeutic strategies are needed for paediatric patients affected by Acute Myeloid Leukaemia (AML), particularly for those at high-risk for relapse. MicroRNAs (miRs) have been extensively studied as biomarkers in cancer and haematological disorders, and their expression has been correlated to the presence of recurrent molecular abnormalities, expression of oncogenes, as well as to prognosis/clinical outcome. In the present study, expression signatures of different miRs related both to presence of myeloid/lymphoid or mixed-lineage leukaemia 1 and Fms like tyrosine kinase 3 internal tandem duplications rearrangements and to the clinical outcome of paediatric patients with AML were identified. Notably, miR-221-3p and miR-222-3p resulted as a possible relapse-risk related miR. Thus, miR-221-3p and miR-222-3p expression modulation was investigated by using a Bromodomain­containing protein 4 (BRD4) inhibitor (JQ1) and a natural compound that acts as histone acetyl transferase inhibitor (curcumin), alone or in association, in order to decrease acetylation of histone tails and potentiate the effect of BRD4 inhibition. JQ1 modulates miR-221-3p and miR-222-3p expression in AML with a synergic effect when associated with curcumin. Moreover, changes were observed in the expression of CDKN1B, a known target of miR-221-3p and miR-222-3p, increase in apoptosis and downregulation of miR-221-3p and miR-222-3p expression in CD34+ AML primary cells. Altogether, these findings suggested that several miRs expression signatures at diagnosis may be used for risk stratification and as relapse prediction biomarkers in paediatric AML outlining that epigenetic drugs, could represent a novel therapeutic strategy for high-risk paediatric patients with AML. For these epigenetic drugs, additional research for enhancing activity, bioavailability and safety is needed.


Assuntos
Curcumina , Leucemia Mieloide Aguda , MicroRNAs , Humanos , Criança , Proteínas Nucleares/metabolismo , Curcumina/farmacologia , Histonas , Fatores de Transcrição/metabolismo , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Apoptose , Proteínas de Ciclo Celular/metabolismo
18.
Front Cell Infect Microbiol ; 11: 730904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970503

RESUMO

Colonization by multidrug-resistant (MDR) organisms in liver transplant (LT) candidates significantly affects the LT outcome. To date, consensus about patient management is lacking, including microbiological screening indications. This pilot study aimed to evaluate the impact of carbapenem-resistant Klebsiella pneumoniae (CR-KP) colonization in LT paediatric candidates to enable optimal prevention and therapeutic strategies that exploit both clinical and microbiological approaches. Seven paediatric patients colonized by CR-KP were evaluated before and until one-year post LT. At the time of the transplant, patients were stratified based on antibiotic (ATB) prophylaxis into two groups: 'standard ATB' (standard ATB prophylaxis), and 'targeted ATB' (MDR antibiogram-based ATB prophylaxis). Twenty-eight faecal samples were collected during follow-up and used for MDR screening and gut microbiota 16S rRNA-based profiling. Post-transplant hospitalization duration was comparable for both groups. With the exception of one patient, no serious infections and/or complications, nor deaths were recorded. A progressive MDR decontamination was registered. In the 'standard ATB' group, overall bacterial richness increased. Moreover, 6 months after LT, Lactobacillus and Bulleidia were increased and Enterobacteriaceae and Klebsiella spp. were reduced. In the 'targeted ATB' group Klebsiella spp., Ruminococcus gnavus, Erysipelotrichaceae, and Bifidobacterium spp. were increased 12 months after LT. In conclusion, both antibiotics prophylaxis do not affect nor LT outcomes or the risk of intestinal bacterial translocation. However, in the 'standard ATB' group, gut microbiota richness after LT was increased, with an increase of beneficial lactic acid- and short-chain fatty acids (SCFA)-producing bacteria and the reduction of harmful Enterobacteriaceae and Klebsiella spp. It could therefore be appropriate to administer standard prophylaxis, reserving the use of ATB-based molecules only in case of complications.


Assuntos
Microbioma Gastrointestinal , Infecções por Klebsiella , Transplante de Fígado , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Criança , Humanos , Klebsiella , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/genética , Projetos Piloto , RNA Ribossômico 16S/genética
19.
Front Mol Biosci ; 8: 688440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671642

RESUMO

The development of the human gut microbiota is characterized by a dynamic sequence of events from birth to adulthood, which make the gut microbiota unique for everyone. Its composition and metabolism may play a critical role in the intestinal homeostasis and health. We propose a study on a single mother-infant dyad to follow the dynamics of an infant fecal microbiota and metabolome changes in relation to breast milk composition during the lactation period and evaluate the changes induced by introduction of complementary food during the weaning period. Nuclear Magnetic Resonance (NMR)-based metabolomics was performed on breast milk and, together with 16S RNA targeted-metagenomics analysis, also on infant stool samples of a mother-infant dyad collected over a period running from the exclusive breastfeeding diet to weaning. Breast milk samples and neonatal stool samples were collected from the 4th to the 10th month of life. Both specimens were collected from day 103 to day 175, while from day 219-268 only stool samples were examined. An exploratory and a predictive analysis were carried out by means of Common component and specific weight analysis and multi-block partial least squares discriminant analysis, respectively. Stools collected during breastfeeding and during a mixed fruit/breastfeeding diet were characterized by high levels of fucosyl-oligosaccharides and glycolysis intermediates, including succinate and formate. The transition to a semi-solid food diet was characterized by several changes in fecal parameters: increase in short-chain fatty acids (SCFAs) levels, including acetate, propionate and butyrate, dissapearance of HMOs and the shift in the community composition, mainly occurring within the Firmicutes phylum. The variations in the fecal metabolome reflected the infant's diet transition, while the composition of the microbiota followed a more complex and still unstable behavior.

20.
Nutrients ; 13(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959740

RESUMO

Nutritional deficiencies are common in inflammatory bowel diseases (IBD). In patients, magnesium (Mg) deficiency is associated with disease severity, while in murine models, dietary Mg supplementation contributes to restoring mucosal function. Since Mg availability modulates key bacterial functions, including growth and virulence, we investigated whether the beneficial effects of Mg supplementation during colitis might be mediated by gut microbiota. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, and fecal consistency. Gut microbiota were analyzed by 16S-rRNA based profiling on fecal samples. Mg supplementation improved microbiota richness in colitic mice, increased abundance of Bifidobacterium and reduced Enterobacteriaceae. KEEG pathway analysis predicted an increase in biosynthetic metabolism, DNA repair and translation pathways during Mg supplementation and in the presence of colitis, while low Mg conditions favored catabolic processes. Thus, dietary Mg supplementation increases bacteria involved in intestinal health and metabolic homeostasis, and reduces bacteria involved in inflammation and associated with human diseases, such as IBD. These findings suggest that Mg supplementation may be a safe and cost-effective strategy to ameliorate disease symptoms and restore a beneficial intestinal flora in IBD patients.


Assuntos
Colite/microbiologia , Colite/terapia , Microbioma Gastrointestinal/efeitos dos fármacos , Magnésio/farmacologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/terapia , Fezes/microbiologia , Feminino , Deficiência de Magnésio/microbiologia , Deficiência de Magnésio/terapia , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA