Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725256

RESUMO

Collecting and removing ocean plastics can mitigate their environmental impacts; however, ocean cleanup will be a complex and energy-intensive operation that has not been fully evaluated. This work examines the thermodynamic feasibility and subsequent implications of hydrothermally converting this waste into a fuel to enable self-powered cleanup. A comprehensive probabilistic exergy analysis demonstrates that hydrothermal liquefaction has potential to generate sufficient energy to power both the process and the ship performing the cleanup. Self-powered cleanup reduces the number of roundtrips to port of a waste-laden ship, eliminating the need for fossil fuel use for most plastic concentrations. Several cleanup scenarios are modeled for the Great Pacific Garbage Patch (GPGP), corresponding to 230 t to 11,500 t of plastic removed yearly; the range corresponds to uncertainty in the surface concentration of plastics in the GPGP. Estimated cleanup times depends mainly on the number of booms that can be deployed in the GPGP without sacrificing collection efficiency. Self-powered cleanup may be a viable approach for removal of plastics from the ocean, and gaps in our understanding of GPGP characteristics should be addressed to reduce uncertainty.


Assuntos
Monitoramento Ambiental/métodos , Plásticos/química , Estudos de Viabilidade , Resíduos de Alimentos , Oceanos e Mares , Termodinâmica , Resíduos/análise
3.
Appl Environ Microbiol ; 89(12): e0165123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054734

RESUMO

IMPORTANCE: Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.


Assuntos
Microbiota , Plásticos , Biopolímeros , Bactérias/genética , Biodegradação Ambiental , Oceanos e Mares
4.
Environ Sci Technol ; 57(32): 11988-11998, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37515555

RESUMO

Photochemical weathering transforms petroleum oil and changes its bulk physical properties, as well as its partitioning into seawater. This transformation process is likely to occur in a cold water marine oil spill, but little is known about the behavior of photochemically weathered oil in cold water. We quantified the effect of photochemical weathering on oil properties and partitioning across temperatures. Compared to weathering in the dark, photochemical weathering increases oil viscosity and water-soluble content, decreases oil-seawater interfacial tension, and slightly increases density. Many of these photochemical changes are much larger than changes caused by evaporative weathering. Further, the viscosity and water-soluble content of photochemically weathered oil are more temperature-sensitive compared to evaporatively weathered oil, which changes the importance of key fate processes in warm versus cold environments. Compared to at 30 °C, photochemically weathered oil at 5 °C would have a 16× higher viscosity and a 7× lower water-soluble content, resulting in lower entrainment and dissolution. Collectively, the physical properties and thus fate of photochemically weathered oil in a cold water spill may be substantially different from those in a warm water spill. These differences could affect the choice of oil spill response options in cold, high-light environments.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Temperatura , Poluentes Químicos da Água/análise , Tempo (Meteorologia) , Água do Mar/química , Água
5.
Environ Sci Technol ; 57(21): 7966-7977, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37186871

RESUMO

Sunlight transforms plastic into water-soluble products, the potential toxicity of which remains unresolved, particularly for vertebrate animals. We evaluated acute toxicity and gene expression in developing zebrafish larvae after 5 days of exposure to photoproduced (P) and dark (D) leachates from additive-free polyethylene (PE) film and consumer-grade, additive-containing, conventional, and recycled PE bags. Using a "worst-case" scenario, with plastic concentrations exceeding those found in natural waters, we observed no acute toxicity. However, at the molecular level, RNA sequencing revealed differences in the number of differentially expressed genes (DEGs) for each leachate treatment: thousands of genes (5442 P, 577 D) for the additive-free film, tens of genes for the additive-containing conventional bag (14 P, 7 D), and none for the additive-containing recycled bag. Gene ontology enrichment analyses suggested that the additive-free PE leachates disrupted neuromuscular processes via biophysical signaling; this was most pronounced for the photoproduced leachates. We suggest that the fewer DEGs elicited by the leachates from conventional PE bags (and none from recycled bags) could be due to differences in photoproduced leachate composition caused by titanium dioxide-catalyzed reactions not present in the additive-free PE. This work demonstrates that the potential toxicity of plastic photoproducts can be product formulation-specific.


Assuntos
Polietileno , Poluentes Químicos da Água , Animais , Polietileno/toxicidade , Peixe-Zebra , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Plásticos/toxicidade , Água
6.
Environ Sci Technol ; 56(19): 13810-13819, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103552

RESUMO

Sunlight chemically transforms marine plastics into a suite of products, with formulation─the specific mixture of polymers and additives─driving rates and products. However, the effect of light-driven transformations on subsequent microbial lability is poorly understood. Here, we examined the interplay between photochemical and biological degradation of fabrics made from cellulose diacetate (CDA), a biobased polymer used commonly in consumer products. We also examined the influence of ∼1% titanium dioxide (TiO2), a common pigment and photocatalyst. We sequentially exposed CDA to simulated sunlight and native marine microbes to understand how photodegradation influences metabolic rates and pathways. Nuclear magnetic resonance spectroscopy revealed that sunlight initiated chain scission reactions, reducing CDA's average molecular weight. Natural abundance carbon isotope measurements demonstrated that chain scission ultimately yields CO2, a newly identified abiotic loss term of CDA in the environment. Measurements of fabric mass loss and enzymatic activities in seawater implied that photodegradation enhanced biodegradation by performing steps typically facilitated by cellulase. TiO2 accelerated CDA photodegradation, expediting biodegradation. Collectively, these findings (i) underline the importance of formulation in plastic's environmental fate and (ii) suggest that overlooking synergy between photochemical and biological degradation may lead to overestimates of marine plastic persistence.


Assuntos
Celulases , Luz Solar , Dióxido de Carbono , Isótopos de Carbono , Celulose/análogos & derivados , Oceanos e Mares , Plásticos/química , Polímeros , Titânio/química
7.
Environ Sci Technol ; 55(13): 8898-8907, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132543

RESUMO

The photodegradation rates of floating marine plastics govern their environmental lifetimes, but the controls on this process remain poorly understood. Photodegradation of these materials has so far been studied under ideal conditions in the absence of environmental factors such as biofouling, which may slow photochemical transformation rates through light screening. To investigate this interaction, we incubated different plastics in continuous flow seawater mesocosms to follow (i) the extent of biofilm growth on the samples and (ii) decreases in light transmittance through the samples over time. We used consumer products with high relevance (e.g., shopping bags, water bottles, and packaging materials) and with different formulations, referring to primary polymers (polyethylene (PE) and polyethylene terephthalate (PET)) and inorganic additives (titanium dioxide (TiO2)). The behavior of consumer-relevant formulations was compared to those of pure PE and PET films, revealing that the relative effects of UV- and, to a lesser extent, visible-light screening differ based on the formulation of the product. Pure PE showed greater relative UV-transmittance decreases (Δ = -34% through the entire sample, accounting for biofilm on both sides of the plastic film) than PET (Δ = -20%) and PE products with TiO2 (Δ = < -10%). Our results demonstrate that even with biofouling, photodegradation remains a highly relevant process for the fate of marine plastics. However, we expect photodegradation rates of plastics in the ocean to be slower than those measured in laboratory studies, due to light screening by biofilms, and the specific formulation of plastic products is a key determinant of the extent of this effect.


Assuntos
Incrustação Biológica , Plásticos , Oceanos e Mares , Polietileno/análise , Água do Mar
8.
Environ Sci Technol ; 55(18): 12383-12392, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34494430

RESUMO

Sunlight exposure is a control of long-term plastic fate in the environment that converts plastic into oxygenated products spanning the polymer, dissolved, and gas phases. However, our understanding of how plastic formulation influences the amount and composition of these photoproducts remains incomplete. Here, we characterized the initial formulations and resulting dissolved photoproducts of four single-use consumer polyethylene (PE) bags from major retailers and one pure PE film. Consumer PE bags contained 15-36% inorganic additives, primarily calcium carbonate (13-34%) and titanium dioxide (TiO2; 1-2%). Sunlight exposure consistently increased production of dissolved organic carbon (DOC) relative to leaching in the dark (3- to 80-fold). All consumer PE bags produced more DOC during sunlight exposure than the pure PE (1.2- to 2.0-fold). The DOC leached after sunlight exposure increasingly reflected the 13C and 14C isotopic composition of the plastic. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry revealed that sunlight exposure substantially increased the number of DOC formulas detected (1.1- to 50-fold). TiO2-containing bags photochemically degraded into the most compositionally similar DOC, with 68-94% of photoproduced formulas in common with at least one other TiO2-containing bag. Conversely, only 28% of photoproduced formulas from the pure PE were detected in photoproduced DOC from the consumer PE. Overall, these findings suggest that plastic formulation, especially TiO2, plays a determining role in the amount and composition of DOC generated by sunlight. Consequently, studies on pure, unweathered polymers may not accurately represent the fates and impacts of the plastics entering the ocean.


Assuntos
Carbono , Plásticos , Oceanos e Mares , Polietileno , Luz Solar
9.
Proc Natl Acad Sci U S A ; 114(1): E9-E18, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994146

RESUMO

The 2010 Deepwater Horizon disaster introduced an unprecedented discharge of oil into the deep Gulf of Mexico. Considerable uncertainty has persisted regarding the oil's fate and effects in the deep ocean. In this work we assess the compound-specific rates of biodegradation for 125 aliphatic, aromatic, and biomarker petroleum hydrocarbons that settled to the deep ocean floor following release from the damaged Macondo Well. Based on a dataset comprising measurements of up to 168 distinct hydrocarbon analytes in 2,980 sediment samples collected within 4 y of the spill, we develop a Macondo oil "fingerprint" and conservatively identify a subset of 312 surficial samples consistent with contamination by Macondo oil. Three trends emerge from analysis of the biodegradation rates of 125 individual hydrocarbons in these samples. First, molecular structure served to modulate biodegradation in a predictable fashion, with the simplest structures subject to fastest loss, indicating that biodegradation in the deep ocean progresses similarly to other environments. Second, for many alkanes and polycyclic aromatic hydrocarbons biodegradation occurred in two distinct phases, consistent with rapid loss while oil particles remained suspended followed by slow loss after deposition to the seafloor. Third, the extent of biodegradation for any given sample was influenced by the hydrocarbon content, leading to substantially greater hydrocarbon persistence among the more highly contaminated samples. In addition, under some conditions we find strong evidence for extensive degradation of numerous petroleum biomarkers, notably including the native internal standard 17α(H),21ß(H)-hopane, commonly used to calculate the extent of oil weathering.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental , Sedimentos Geológicos/análise , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Alcanos/análise , Desastres , Golfo do México , Hidrocarbonetos/análise , Campos de Petróleo e Gás , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
10.
Proc Natl Acad Sci U S A ; 114(38): 10065-10070, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28847967

RESUMO

During the Deepwater Horizon disaster, a substantial fraction of the 600,000-900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform's riser pipe was pared at the wellhead (June 4-July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers.

11.
Int J Cosmet Sci ; 42(2): 146-155, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31880361

RESUMO

OBJECTIVE: Waxes are used as structuring agents in lipsticks. There are a variety of waxes combined in a single lipstick to provide good stability, pleasant texture and good pay-off. Due to a significant growth for natural, green and sustainable products, there is a constant search for alternatives to animal-derived and petroleum-derived ingredients. In this study, a green, non-animalderived wax, namely long-chain ketones (referred to as alkenones), sourced from marine microalgae was formulated into lipsticks and evaluated as a structuring agent. METHODS: Alkenones were used as a substitute for microcrystalline wax, ozokerite and candelilla wax, typical structuring agents. In total, 384 lipsticks were formulated: L1 (control, no alkenones), L2 (alkenones as a substitute for ozokerite), L3 (alkenones as a substitute for microcrystalline wax) and L4 (alkenones as a substitute for candelilla wax). Products were tested for hardness (bending force), stiffness, firmness (needle penetration), pay-off (using a texture analyser and a consumer panel), friction, melting point and stability for 12 weeks at 25 and 45°C. RESULTS: Alkenones influenced each characteristic evaluated. In general, lipsticks with alkenones (L2-L4) became softer and easier to bend compared to the control (L1). In terms of firmness, lipsticks were similar to the control, except for L4, which was significantly (P < 0.05) firmer. The effect on pay-off was not consistent. L2 and L3 had higher pay-off to skin and fabric than L1. In addition, L4 had the lowest amount transferred, but it still had the highest colour intensity on skin. Alkenones influenced friction (glide) positively; the average friction decreased for L2-L4. The lowest friction (i.e. best glide) was shown in L4. Melting point of the lipsticks was lower when alkenones were present. Overall, L4, containing 7% of 4 alkenones in combination with microcrystalline wax, ozokerite and carnauba wax, was found to have the most desirable attributes, including ease of bending, high level of firmness, low pay-off in terms of amount, high colour intensity on skin and low friction (i.e. better glide). Consumers preferred L4 the most overall. CONCLUSION: Results of this study indicate that alkenones offer a sustainable, non-animal and non-petroleum-derived choice as a structuring agent for lipsticks.


OBJECTIF: Les cires sont utilisées comme agents de structuration dans les rouges à lèvres. Un rouge à lèvres contient plusieurs cires, afin d'obtenir une bonne stabilité, une texture agréable et un bon transfert de matière. En raison d'une croissance significative de la demande en produits naturels, écologiques et durables, les chercheurs s'efforcent constamment de trouver des alternatives aux ingrédients d'origine animale et dérivés du pétrole. Dans cette étude, les cétones à longue chaîne (appelés alkénones), une cire verte qui n'est pas d'origine animale, mais provenant de microalgues marines, a été formulée pour les rouges à lèvres et évaluée comme agent de structuration. MÉTHODES: Les alkénones ont été utilisés comme substitut pour la cire microcristalline, l'ozokérite et la cire de candelilla, des agents de structuration courants. Au total, 384 rouges à lèvres ont été formulés : L1 (contrôle, sans alkénone), L2 (alkénones comme substitut de l'ozokérite), L3 (alkénones comme substitut de la cire microcristalline) et L4 (alkénones comme substitut de la cire de candelilla). Des tests ont été réalisés sur les produits pour évaluer la dureté (force de flexion), la rigidité, la fermeté (pénétration de l'aiguille), le transfert de matière (à l'aide d'un analyseur de texture et d'un panel de consommateurs), la friction, le point de fusion et la stabilité pendant 12 semaines à 25 et 45 °C. RÉSULTATS: Les alkénones ont eu une influence sur chacune des caractéristiques évaluées. En général, les rouges à lèvres contenant des alkénones (L2 à L4) sont devenus plus mous et ont présenté une flexion plus facile que dans le cas du contrôle (L1). En termes de fermeté, les rouges à lèvres étaient similaires au contrôle, à l'exception de L4, qui était significativement (P < 0,05) plus ferme. L'effet sur le transfert de matière a été variable. L2 et L3 ont présenté un transfert de matière sur la peau et le tissu supérieur à celui de L1. En outre, dans le cas de L4, la quantité transférée était la plus faible, mais l'intensité de la couleur sur la peau était toujours la plus élevée. Les alkénones ont eu un effet positif sur la friction (glissement) ; la friction moyenne a diminué pour L2 à L4. La friction la plus basse (c.-à-d. le meilleur glissement) a été observée dans le cas de L4. Le point de fusion des rouges à lèvres était plus bas lorsque des alkénones étaient présents. Dans l'ensemble, L4, contenant 7 % d'alkénones en combinaison avec de la cire microcristalline, de l'ozokérite et de la cire de carnauba, s'est révélée avoir les caractéristiques les plus souhaitables, notamment une facilité de flexion, une fermeté élevée, un faible transfert de matière en termes de quantité, une intensité de couleur élevée sur la peau et une faible friction (c.-à-d. un meilleur glissement). En général, les consommateurs ont préféré L4. CONCLUSION: Les résultats de cette étude indiquent que les alkénones offrent un choix durable, non issu de l'animal et non dérivé du pétrole comme agent de structuration pour les rouges à lèvres.


Assuntos
Alcenos/química , Cosméticos/química , Plantas/química , Ceras/química
12.
Environ Sci Technol ; 53(6): 2971-2980, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30829032

RESUMO

Industrial-scale dumping of organic waste to the deep ocean was once common practice, leaving a legacy of chemical pollution for which a paucity of information exists. Using a nested approach with autonomous and remotely operated underwater vehicles, a dumpsite offshore California was surveyed and sampled. Discarded waste containers littered the site and structured the suboxic benthic environment. Dichlorodiphenyltrichloroethane (DDT) was reportedly dumped in the area, and sediment analysis revealed substantial variability in concentrations of p, p-DDT and its analogs, with a peak concentration of 257 µg g-1, ∼40 times greater than the highest level of surface sediment contamination at the nearby DDT Superfund site. The occurrence of a conspicuous hydrocarbon mixture suggests that multiple petroleum distillates, potentially used in DDT manufacture, contributed to the waste stream. Application of a two end-member mixing model with DDTs and polychlorinated biphenyls enabled source differentiation between shelf discharge versus containerized waste. Ocean dumping was found to be the major source of DDT to more than 3000 km2 of the region's deep seafloor. These results reveal that ocean dumping of containerized DDT waste was inherently sloppy, with the contents readily breaching containment and leading to regional scale contamination of the deep benthos.


Assuntos
Hidrocarbonetos Clorados , Bifenilos Policlorados , Poluentes Químicos da Água , California , DDT , Monitoramento Ambiental , Oceanos e Mares
13.
Environ Sci Technol ; 53(14): 8244-8251, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31259540

RESUMO

Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735-1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments with radiocarbon (14C) data of higher plant leaf-wax n-alkanoic acids. Isotope-mass balance-calculations of perylene and n-alkanoic acids indicate that ∼40% of sedimentary organic matter is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and are insensitive to elevated 14C concentrations following nuclear weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional flux during urban sprawl. These findings suggest that perylene is definitely a product of soil-derived fungi, and a powerful chemical tracer to study the spatial and temporal connectivity between terrestrial and aquatic environments.


Assuntos
Perileno , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Alocação de Recursos
14.
Environ Sci Technol ; 52(13): 7250-7258, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29812924

RESUMO

About half of the surface oil floating on the Gulf of Mexico in the aftermath of the 2010 Deepwater Horizon spill was transformed into oxygenated hydrocarbons (OxHC) within days to weeks. These OxHC persist for years in oil/sand aggregates in nearshore and beach environments, and there is concern that these aggregates might represent a long-term source of toxic compounds. However, because this OxHC fraction is a continuum of transformation products that are not well chemically characterized, it is not included in current oil spill fate and effect models. This challenges an accurate environmental risk assessment of weathered oil. Here, we used molecular and bulk analytical techniques to constrain the chemical composition and environmental fate of weathered oil samples collected on the sea surface and beaches of the Gulf of Mexico. We found that approximately 50% of the weathering-related disappearance of saturated and aromatic compounds in these samples was compensated by an increase in OxHC. Furthermore, we identified and quantified a suite of oxygenated aliphatic compounds that are more water-soluble and less hydrophobic than its presumed precursors, but only represent <1% of the oil residues' mass. Lastly, dissolution experiments showed that compounds in the OxHC fraction can leach into the water; however, the mass loss of this process is small. Overall, this study shows that the OxHC fraction is prevalent and persistent in weathered oil/sand aggregates, which can act as a long-term source of dissolved oil-derived compounds.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Monitoramento Ambiental , Golfo do México
15.
Environ Sci Technol ; 52(14): 7614-7620, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29897241

RESUMO

Historical reconstruction of mercury (Hg) accumulation in natural archives, especially lake sediments, has been essential to understanding human perturbation of the global Hg cycle. Here we present a high-resolution chronology of Hg accumulation between 1727 and 1996 in a varved sediment core from the Pettaquamscutt River Estuary (PRE), Rhode Island. Mercury accumulation is examined relative to (1) historic deposition of polycyclic aromatic hydrocarbons (PAHs) and lead (Pb) and its isotopes (206Pb/207Pb) in the same core, and (2) other reconstructions of Hg deposition in urban and remote settings. Mercury deposition in PRE parallels the temporal patterns of PAHs, and both track industrialization and regional coal use between 1850 and 1950 as well as rising petroleum use after 1950. There is little indication of increased Hg deposition from late 19th-century silver and gold mining in the western U.S. A broad maximum of Hg deposition during 1930-1980, and not found in remote sites, is consistent with the predicted influence of additional industrial sources and commercial products. Our results imply that a significant portion of global anthropogenic Hg emissions during the 20th century was deposited locally, near urban and industrial centers of Hg use and release.


Assuntos
Mercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Lagos , New England , Rhode Island
16.
Environ Sci Technol ; 52(4): 1797-1805, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29363968

RESUMO

Following the Deepwater Horizon (DWH) blowout in 2010, oil floated on the Gulf of Mexico for over 100 days. In the aftermath of the blowout, substantial accumulation of partially oxidized surface oil was reported, but the pathways that formed these oxidized residues are poorly constrained. Here we provide five quantitative lines of evidence demonstrating that oxidation by sunlight largely accounts for the partially oxidized surface oil. First, residence time on the sunlit sea surface, where photochemical reactions occur, was the strongest predictor of partial oxidation. Second, two-thirds of the partial oxidation from 2010 to 2016 occurred in less than 10 days on the sunlit sea surface, prior to coastal deposition. Third, multiple diagnostic biodegradation indices, including octadecane to phytane, suggest that partial oxidation of oil on the sunlit sea surface was largely driven by an abiotic process. Fourth, in the laboratory, the dominant photochemical oxidation pathway of DWH oil was partial oxidation to oxygenated residues rather than complete oxidation to CO2. Fifth, estimates of partial photo-oxidation calculated with photochemical rate modeling overlap with observed oxidation. We suggest that photo-oxidation of surface oil has fundamental implications for the response approach, damage assessment, and ecosystem restoration in the aftermath of an oil spill, and that oil fate models for the DWH spill should be modified to accurately reflect the role of sunlight.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Ecossistema , Golfo do México , Oxirredução
18.
Proc Natl Acad Sci U S A ; 112(43): 13184-9, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460018

RESUMO

Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.


Assuntos
Gasolina/análise , Água Subterrânea/química , Indústria de Petróleo e Gás , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Cromatografia Gasosa-Espectrometria de Massas
20.
Environ Sci Technol ; 51(21): 12972-12980, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28994589

RESUMO

Humans have interacted with fire for thousands of years, yet the utilization of fossil fuels marked the beginning of a new era. Ubiquitous in the environment, pyrogenic carbon (PyC) arises from incomplete combustion of biomass and fossil fuels, forming a continuum of condensed aromatic structures. Here, we develop and evaluate 14C records for two complementary PyC molecular markers, benzene polycarboxylic acids (BPCAs) and polycyclic aromatic hydrocarbons (PAHs), preserved in aquatic sediments from a suburban and a remote catchment in the United States (U.S.) from the mid-1700s to 1998. Results show that the majority of PyC stems from local sources and is transferred to aquatic sedimentary archives on subdecadal to millennial time scales. Whereas a small portion stems from near-contemporaneous production and sedimentation, the majority of PyC (∼90%) experiences delayed transmission due to "preaging" on millennial time scales in catchment soils prior to its ultimate deposition. BPCAs (soot) and PAHs (precursors of soot) trace fossil fuel-derived PyC. Both markers parallel historical records of the consumption of fossil fuels in the U.S., yet never account for more than 19% total PyC. This study demonstrates that isotopic characterization of multiple tracers is necessary to constrain histories and inventories of PyC and that sequestration of PyC can markedly lag its production.


Assuntos
Carbono , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Combustíveis Fósseis , Sedimentos Geológicos , Humanos , Fuligem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA