Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nematol ; 56(1): 20240018, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38721061

RESUMO

In the southern United States, corn earworm, Helicoverpa zea (Boddie), and soybean looper, Chrysodeixis includens (Walker) are economically important crop pests. Although Bt crops initially provided effective control of target pests such as H. zea, many insect pests have developed resistance to these Bt crops. Alternative approaches are needed, including biological control agents such as entomopathogenic nematodes (EPNs). However, the effectiveness of EPNs for aboveground applications can be limited due to issues such as desiccation and ultraviolet radiation. Effective adjuvants are needed to overcome these problems. Ten strains of EPNs were tested for virulence against eggs, first to fourth instars, fifth instars, and pupae of H. zea and C. includens in the laboratory. These 10 EPN strains were Heterorhabditis bacteriophora (HP88 and VS strains), H. floridensis (K22 strain), Hgkesha (Kesha strain), Steinernema carpocapsae (All and Cxrd strains), S. feltiae (SN strain), S. rarum (17c+e strain), and S. riobrave (355 and 7-12 strains). EPNs could infect eggs of H. zea or C. includens in the laboratory, but the infection was low. The mortality caused by 10 EPN strains in seven days was significantly higher for the first to fourth instars of H. zea compared to the control, as was the fifth instars of H. zea. Similarly, for the first to fourth and fifth instars of C. includens, the mortality was significantly higher compared to the controls, respectively. However, only S. riobrave (355) had significantly higher mortality than the control for the pupae of H. zea. For the pupae of C. includens, except for H. bacteriophora (HP88), S. rarum (17c+e), and H. floridensis (K22), the mortality of the other seven strains was significantly higher than the control. Subsequently, S. carpocapsae (All) and S. riobrave (7-12) were chosen for efficacy testing in the field with an adjuvant 0.066% Southern Ag Surfactant (SAg Surfactant). In field experiments, the SAg Surfactant treatment significantly increased the mortality and EPN infection for S. carpocapsae (All) on first instars of H. zea in corn plant whorls. On soybean plants, with the SAg Surfactant, S. carpocapsae (All) was more effective than S. riobrave (7-12) on fifth instars of C. includens. This study indicates that EPNs can control H. zea and C. includens, and SAg Surfactant can enhance EPN efficacy.

2.
Arch Insect Biochem Physiol ; 114(2): 1-19, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37497800

RESUMO

Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.


Assuntos
Antimaláricos , Inseticidas , Metarhizium , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Controle de Insetos , Insetos , Controle Biológico de Vetores/métodos
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768565

RESUMO

Long noncoding RNAs (lncRNAs) are a diverse class of noncoding RNAs that are typically longer than 200 nucleotides but lack coding potentials. Advances in deep sequencing technologies enabled a better exploration of this type of noncoding transcripts. The poor sequence conservation, however, complicates the identification and annotation of lncRNAs at a large scale. Wheat is among the leading food staples worldwide whose production is threatened by both biotic and abiotic stressors. Here, we identified putative lncRNAs from durum wheat varieties that differ in stem solidness, a major source of defense against wheat stem sawfly, a devastating insect pest. We also analyzed and annotated lncRNAs from two bread wheat varieties, resistant and susceptible to another destructive pest, orange wheat blossom midge, with and without infestation. Several putative lncRNAs contained potential precursor sequences and/or target regions for microRNAs, another type of regulatory noncoding RNAs, which may indicate functional networks. Interestingly, in contrast to lncRNAs themselves, microRNAs with potential precursors within the lncRNA sequences appeared to be highly conserved at the sequence and family levels. We also observed a few putative lncRNAs that have perfect to near-perfect matches to organellar genomes, supporting the recent observations that organellar genomes may contribute to the noncoding transcript pool of the cell.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , MicroRNAs/genética , RNA Longo não Codificante/genética , Genoma , Insetos/genética , Organelas
4.
Ecotoxicol Environ Saf ; 223: 112563, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343900

RESUMO

Although many toxicological evaluations have been conducted for honey bees (Apis mellifera), most of these studies have only focused on the effects of individual chemicals. However, honey bees are usually exposed to pesticide mixtures under field conditions. In this study, we examined the effects of individual pesticides and mixtures of clothianidin (CLO) with eight other pesticides [carbaryl (CAR), thiodicarb (THI), chlorpyrifos (CHL), beta-cyfluthrin (BCY), gamma-cyhalothrin (GCY), tetraconazole (TET), spinosad (SPI) and indoxacarb (IND)] on honey bees using a feeding method. Toxicity tests of a 4-day exposure to individual pesticides revealed that CLO had the highest toxicity to A. mellifera, with an LC50 value of 0.24 µg a.i. mL-1, followed by IND and CHL with LC50 values of 3.40 and 3.56 µg a.i. mL-1, respectively. SPI and CAR had relatively low toxicities, with LC50 values of 7.19 and 8.42 µg a.i. mL-1, respectively. In contrast, TET exhibited the least toxicity, with an LC50 value of 258.7 µg a.i. mL-1. Most binary mixtures of CLO with other pesticides exerted additive and antagonistic effects. However, all the ternary mixtures containing CLO and TET (except for CLO+TET+THD) elicited synergistic responses to bees. Either increased numbers of components in the mixture or/and a unique mode of action appeared to be responsible for the higher toxicity of mixtures. Our findings emphasized the need for risk assessment of pesticide mixtures rather than the individual chemicals. Our data also provided information that might help growers avoid increased toxicity and unnecessary injury to pollinators.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Guanidinas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Tiazóis
5.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618901

RESUMO

A method for rearing the southern green stinkbug, (Nezara viridula L.) (Heteroptera: Pentatomidae), using a modified lygus semi-solid artificial diet was developed. First to second-instar nymph were reared in a density of 631.5 ± 125.05 eggs per Petri-dish (4 cm deep × 15 cm diam). Second instar to adult were reared in a density of 535.0 ± 112.46 s instar nymphs per rearing cage (43 × 28 × 9 cm). Mating and oviposition occurred in popup rearing cages (30 × 30 cm), each holding 60-90 mixed sex adults of similar age. Adults emerged 35.88 ± 2.13 d after oviposition and survived for an average of 43.09 ± 9.53 d. On average, adults laid 223.95 ± 69.88 eggs in their lifetime, for a total production of 8,099 ± 1,277 fertile eggs/oviposition cage. Egg fertility was 77.93% ± 16.28. Egg masses held in petri-dishes had a total hatchability of 79.38% ± 20.03. Mortality of early nymphs in petri-dishes was 0.64% ± 0.12 for the first instar and 1.37% ± 0.45 for second instar. Late nymphal mortality in rearing cages was 1.41% ± 0.10, 3.47% ± 1.27, and 4.72% ± 1.29 for the third, fourth, and fifth instars, respectively. Survivorship from nymphs to adults was 88.48% ± 2.76. Using artificial diet for rearing N. viridula could reduce cost by avoiding time-consuming issues with daily feeding fresh natural hosts and insect manipulation. It could increase reliability and simplicity of bug production, which should facilitate mass rearing of its biological control agents.


Assuntos
Ração Animal , Heterópteros/crescimento & desenvolvimento , Animais , Agentes de Controle Biológico , Fertilidade , Heterópteros/fisiologia , Laboratórios , Mortalidade , Oviposição , Reprodução
6.
Artigo em Inglês | MEDLINE | ID: mdl-32172308

RESUMO

Adult spermatogenesis of Polygonia c-aureum was compared between non-diapausing and diapausing butterflies before overwintering. This butterfly has seasonal polyphenism, i.e., summer and autumnal forms. Summer form butterflies that emerged in summer reproduce shortly after emergence, while autumnal forms that emerged in autumn mate in spring. Immatures were reared under either a long photoperiod, which produced the summer form without diapause or under a short photoperiod, which produced the autumnal form with diapause. We found almost no differences in adult spermatogenesis between the two seasonal forms, indicating that adult spermatogenesis is not related to adult diapause. Although adult diapause in the autumnal form is maintained under short photoperiods and terminated under long photoperiods, such a photoperiod did not affect the spermatogenesis of the autumnal form. Our earlier studies indicate that relatively few eupyrene and apyrene sperm are produced after overwintering. Although apyrene spermatogenesis occurred in young adults, eupyrene spermatogenesis did in a small scale before overwintering. These results suggest strongly that male autumnal form butterflies prepare the sperm until overwintering, which had been formed during the larval, pupal and young adult stages.


Assuntos
Envelhecimento/fisiologia , Borboletas/fisiologia , Diapausa/fisiologia , Fotoperíodo , Espermatogênese/fisiologia , Animais , Reprodução/fisiologia , Estações do Ano
7.
J Insect Sci ; 20(5)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32960968

RESUMO

Wheat stem sawfly, Cephus cinctus Norton, is an economically serious pest of cereals grown in North America. Barley cultivars were previously planted as resistant crops in rotations to manage C. cinctus, but due to increasing levels of injury to this crop, this is no longer a valid management tactic in Montana. Therefore, we aimed to understand antixenosis (behavioral preference), antibiosis (mortality), and potential yield compensation (increased productivity in response to stem injuries) in barley exposed to C. cinctus. We examined these traits in eight barley cultivars. Antixenosis was assessed by counting number of eggs per stem and antibiosis was assessed by counting infested stems, dead larvae, and stems cut by mature larvae. Potential yield compensation was evaluated by comparing grain yield from three categories of stem infestation: 1) uninfested, 2) infested with dead larva, and 3) infested cut by mature larva at crop maturity. We found the greatest number of eggs per infested stem (1.80 ± 0.04), the highest proportion of infested stems (0.63 ± 0.01), and the highest proportion of cut stems (0.33 ± 0.01) in 'Hockett'. Seven out of eight cultivars had greater grain weight for infested stems than for uninfested stems. These cultivars may have compensatory responses to larval feeding injury. Overall, these barley cultivars contain varying levels of antixenosis, antibiosis, and differing levels of yield compensation. Our results provide foundational knowledge on barley traits that will provide a framework to further develop C. cinctus resistant or tolerant barley cultivars.


Assuntos
Herbivoria , Hordeum/fisiologia , Himenópteros/fisiologia , Defesa das Plantas contra Herbivoria , Animais , Himenópteros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia
8.
J Nematol ; 52: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628826

RESUMO

A total of 30 different agricultural fields in the Golden Triangle Region of Montana, USA were surveyed, and 150 soil samples were evaluated for the presence of entomopathogenic nematodes (EPNs). The authors isolated EPNs from 10% of the collected samples. The recovered isolates were identified as Steinernema feltiae and Heterorhabditis bacteriophora by using morphological and molecular analysis. Steinernema feltiae was found from two fields, Kalispell (S. feltiae 1) and Choteau (S. feltiae 2). Steinernema feltiae (1 and 2) differed significantly from each other in terms of morphological characters for infective juveniles (distance from anterior end to excretory pore and nerve ring) and 1st generation males (body length, spicule length, gubernaculum length, oesophagus, tail, and anal body diameter). Steinernema feltiae 2 and H. bacteriophora were recovered from the same field in Choteau. All these species were recovered from wheat fields with sandy clay loam and loam soils with 3.3 to 3.4% organic matter content and pH 8.A total of 30 different agricultural fields in the Golden Triangle Region of Montana, USA were surveyed, and 150 soil samples were evaluated for the presence of entomopathogenic nematodes (EPNs). The authors isolated EPNs from 10% of the collected samples. The recovered isolates were identified as Steinernema feltiae and Heterorhabditis bacteriophora by using morphological and molecular analysis. Steinernema feltiae was found from two fields, Kalispell (S. feltiae 1) and Choteau (S. feltiae 2). Steinernema feltiae (1 and 2) differed significantly from each other in terms of morphological characters for infective juveniles (distance from anterior end to excretory pore and nerve ring) and 1st generation males (body length, spicule length, gubernaculum length, oesophagus, tail, and anal body diameter). Steinernema feltiae 2 and H. bacteriophora were recovered from the same field in Choteau. All these species were recovered from wheat fields with sandy clay loam and loam soils with 3.3 to 3.4% organic matter content and pH 8.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30251035

RESUMO

Polygonia c-aureum females exhibit photoperiodically induced imaginal diapause, characterized by cessation of ovarian development. Females grown at a short daylength (SD) entered imaginal diapause, whereas those grown at a long daylength (LD) produced eggs rapidly after adult emergence at 21 °C. The termination of diapause was influenced by daylength: diapause ended faster at LD than SD. Complete termination of diapause took 30 days in unchilled females reared under LD at 21 °C. On the other hand, prompt, synchronized and strong diapause termination occurred at post-chilling periods. Photoperiods at post-chilling periods affected ovarian development, when the length of pre-chilling periods or the length of chilling periods was shorter, suggesting that these treatments were not enough to complete diapause development. Ovarian development proceeded earlier in chilled and subsequent warmed females than unchilled females. Wing damage was remarkable at post-chilling periods when females were reared under an adequate length of pre-chilling and chilling periods, especially comparing with females under pre-overwintering conditions without chilling, indicating that post-diapause reproductive development was weak in unchilled females. Thus, exposure to low temperatures is necessary for a strong diapause termination in this butterfly.


Assuntos
Envelhecimento , Borboletas/fisiologia , Diapausa , Fotoperíodo , Estações do Ano , Temperatura , Fatores Etários , Animais , Borboletas/crescimento & desenvolvimento , Feminino , Ovário/crescimento & desenvolvimento , Reprodução , Fatores Sexuais , Fatores de Tempo , Asas de Animais/crescimento & desenvolvimento
10.
J Invertebr Pathol ; 153: 6-11, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29428603

RESUMO

Alfalfa weevil, Hypera postica Gyllenhal, is an important pest in forage alfalfa worldwide, and especially so on the Northern Plains of North America. Neither the weevil-specific fungus, Erynia phytonomi, nor the weevil's parasitoids are able to routinely suppress outbreaks as they do in the eastern U.S. A new Bacillus thuringiensis var. galleriae, having a Cry8Da coleopteran-active toxin, has been recently commercialized. We examined the efficacy of this B. thuringiensis product against the H. postica in replicated field trials in north central Montana. Because it has been suggested that efficiency of the parasitoids, Bathyplectes curculionis and Oomyzus incertus, was inversely proportional to host numbers (i.e., parasitoid efficiency increased when host population is low), we also sought to determine if a partial reduction of larval H. postica populations with a B. thuringiensis would yield to greater parasitoid efficiency, manifested as higher percent parasitism among the surviving larvae. The B. thuringiensis gave 27-40% reduction in weevil numbers at the low label rate, 55-59% for the high label rate. Mean parasitism at the two research locations varied from 5-26% and 17-36% respectively, but application of the B. thuringiensis had no significant effect on parasitism levels, i.e. parasitism was not greater in treated than in carrier control plots.


Assuntos
Bacillus thuringiensis , Controle Biológico de Vetores/métodos , Gorgulhos/parasitologia , Animais , Himenópteros/parasitologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-28497253

RESUMO

We investigated the effects of juvenile hormone analogue (methoprene) and 20-hydroxyecdysone on female and male reproduction in a nymphalid butterfly, Polygonia c-aureum. This butterfly has a facultative adult diapause controlled by the corpora allata and brain. Methoprene seems to terminate reproductive diapause, although transplantation experiments indicate that the activity of the corpora allata does not affect male mating behavior Endo (Dev Growth Differ 15:1-10, 1973a), suggesting that the brain may be involved in diapause. We found that exposure to methoprene promoted the development of ovaries and of the male accessory glands and simplex. On the other hand, exposure to 20-hydroxyecdysone did not promote the development of female and male reproductive organs and eupyrene sperm movement from the testis to the duplex in the adult stage. Ecdysteroid titer in both sexes was consistently low in adults. These results suggest that imaginal diapause is largely regulated by juvenile hormone in this butterfly.


Assuntos
Ecdisterona/farmacologia , Lepidópteros/efeitos dos fármacos , Metoprene/farmacologia , Animais , Diapausa/efeitos dos fármacos , Feminino , Hormônios Juvenis/farmacologia , Masculino , Reprodução/efeitos dos fármacos
12.
J Invertebr Pathol ; 122: 10-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111763

RESUMO

The sweetpotato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is one of the most important pests of sweet potatoes in the world. With free trade between the United States and the U.S.-controlled Mariana Islands, C. formicarius has spread along with this commodity. Because of the cryptic nature of the larvae and nocturnal activity of the adults, and the cancellation of long-residual pesticides, this pest has become increasingly difficult to control. Therefore, the present study sought to explore and to compare the effectiveness of Metarhizium brunneum F52 (90ml a.i./ha), Beauveria bassiana GHA (40ml a.i./ha), spinosad (90g a.i./ha), azadirachtin (1484ml a.i./ha), B. bassiana+M. brunneum (20ml a.i./ha+45ml a.i./ha), B. bassiana+azadirachtin (20ml a.i./ha+742ml a.i./ha), B. bassiana+spinosad (20ml a.i./ha+45ml a.i./ha), M. brunneum+azadirachtin (45ml a.i./ha+742ml a.i./ha) and M. brunneum+spinosad (45ml a.i./ha+45 grams a.i./ha) in controlling this pest in both the laboratory and the field. The treatment with B. bassiana+M. brunneum was the most effective in reducing tuber damage by C. formicarius, producing the highest yields. The most adult cadavers were found in plots treated with the combination of two fungi. This combined fungal formulation appears to be appropriate for the practical control of C. formicarius on sweet potatoes.


Assuntos
Beauveria , Metarhizium , Controle Biológico de Vetores/métodos , Gorgulhos/microbiologia , Animais , Produtos Agrícolas/microbiologia , Ipomoea batatas/microbiologia
13.
J Invertebr Pathol ; 120: 43-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944009

RESUMO

Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are serious soil dwelling pests of small grains, corn, sugar beets, and potatoes. Limonius californicus and Hypnoidus bicolor are the predominant wireworm species infesting wheat in Montana, particularly in the 'Golden Triangle' area of north-central Montana. Wireworm populations in field crops are increasing, but currently available insecticides provide only partial control, and no alternative management tools exist. In our study, three entomopathogenic fungi were tested for their efficacy against wireworms in spring wheat at two field locations (Ledger and Conrad, Montana, USA) in 2013. The three fungi (Metarhizium brunneum F52, Beauveria bassiana GHA, and Metarhizium robertsii DWR 346) were evaluated as seed-coat, in-furrow granular, and soil band-over-row drench applications in addition to imidacloprid (Gaucho® 600) seed treatment (as a chemical check), the approach currently being used by growers. Wireworm damage in these treatments was evaluated as standing plant counts, wireworm population surveys, and yield. The three fungi, applied as formulated granules or soil drenches, and the imidacloprid seed treatment all resulted in significantly higher plant stand counts and yields at both locations than the fungus-coated seed treatments or the untreated control. Significant differences were detected among the application methods but not among the species of fungi within each application method. All three fungi, when applied as granules in furrow or as soil drenches, were more effective than when used as seed-coating treatments for wireworm control, and provided an efficacy comparable or superior to imidacloprid. The fungi used in this study provided significant plant and yield protection under moderate wireworm pressure, supporting their value in the management of this pest.


Assuntos
Beauveria , Besouros , Metarhizium , Controle Biológico de Vetores/métodos , Triticum/microbiologia , Animais , Produtos Agrícolas/microbiologia , Larva/microbiologia , Doenças das Plantas/microbiologia
14.
J Econ Entomol ; 107(2): 661-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772547

RESUMO

The crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), has recently emerged as a serious pest of canola (Brassica napus L.) in Montana. The adult beetles feed on canola leaves, causing many small holes that stunt growth and reduce yield. In 2013, damage to canola seedlings was high (approximately 80%) in many parts of Montana, evidence that when flea beetles emerge in large numbers, they can quickly destroy a young canola crop. In the current study, the effectiveness of several biopesticides was evaluated and compared with two insecticides (deltamethrin and bifenthrin) commonly used as foliar sprays as well as seed treatment with an imidacloprid insecticide for the control of P. cruciferae under field conditions in 2013. The biopesticides used included an entomopathogenic nematode (Steinernema carpocapsae), two entomopathogenic fungi (Beauveria bassiana and Metarhizium brunneum), neem, and petroleum spray oils. The control agents were delivered in combination or alone in a single or repeated applications at different times. The plant-derived compound neem (azadirachtin), petroleum spray oil, and fatty acids (M-Pede) only showed moderate effect, although they significantly reduced leaf injuries caused by P. cruciferae and resulted in higher canola yield than the untreated control. Combined use of B. bassiana and M. brunneum in two repeated applications and bifenthrin in five applications were most effective in reducing feeding injuries and improving yield levels at both trial locations. This indicates that entomopathogenic fungi are effective against P. cruciferae, and may serve as alternatives to conventional insecticides or seed treatments in managing this pest.


Assuntos
Besouros/efeitos dos fármacos , Besouros/fisiologia , Controle de Insetos/métodos , Animais , Beauveria/fisiologia , Besouros/microbiologia , Besouros/parasitologia , Inseticidas/administração & dosagem , Inseticidas/farmacologia , Metarhizium/fisiologia , Montana , Controle Biológico de Vetores/métodos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Distribuição Aleatória , Rabditídios/fisiologia , Fatores de Tempo
15.
Insects ; 15(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667395

RESUMO

In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: oxamyl, acephate, bifenthrin, λ-cyhalothrin, imidacloprid, thiamethoxam, and sulfoxaflor. Stinks bugs were collected from soybeans in Leland, MS, USA during 2022 and 2023, as well as from wild host plants in Clarksdale, MS. There was no significant difference in the susceptibility of C. hilaris to seven insecticides between two years, whereas P. guildinii showed slightly increased susceptibility to neonicotinoids in 2023. Among all four stink bug species, susceptibility in 2022 was ranked as P. guildinii ≤ C. hilaris ≈ N. viridula, while in 2023, it was ranked as P. guildinii ≤ C. hilaris ≤ E. Servus. Additionally, populations of E. servus and P. guildinii collected from Clarksdale exhibited high tolerance to pyrethroids and neonicotinoids. Moreover, populations of E. servus and P. guildinii from SIMRU-2022 and Clarksdale-2023 showed elevated esterase and cytochrome P450 activity, respectively. These findings from spray bioassays and enzyme activity analyses provide a baseline for monitoring insecticide resistance in Pentatomidae and can guide insecticide resistance management strategies for Mississippi soybean.

16.
Pest Manag Sci ; 80(6): 2626-2638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38343001

RESUMO

BACKGROUND: Montana accounts for approximately 45% of US dry pea production and the pea leaf weevil (PLW; Sitona lineatus (L.)) is the most common insect pest in this region. After crop emergence adult PLW feed on the foliage to mature and subsequently mate, and the soil-dwelling larvae feed and develop on the nitrogen-fixing root nodules. Producers commonly apply prophylactic insecticide treatments to the seed at planting as well as one or two post-emergent insecticide sprays to control PLW damage. To develop alternative management strategies based on integrated pest management (IPM), this field study evaluated pulse crops grown in Montana for adult feeding preference and larval development. Ten different field pea varieties, along with two faba bean, lentil and chickpea varieties, were evaluated during the 2020 and 2021 field seasons at the Montana State University Arthur H. Post Agronomy Farm. RESULTS: Significant PLW pest pressure was observed within the research plots during both experimental years. Field pea and faba bean were preferred by the foliage feeding adult stage, with all but one variety averaging 39.2 to 86.3 average notches per plant. The pea variety Lifter was significantly preferred over all other comparisons, averaging 142.4 and 95.0 notches per plant in 2020 and 2021, respectively. Adult PLW feeding on lentil and chickpea was minimal, averaging 3.3 to 8.2 and 0.5 to 1.6 notches per plant, respectively. Numbers of larvae were highest on the roots of pea varieties, a known reproductive host, and almost nil on lentil and chickpea roots. Faba bean is also known as reproductive host, but, unexpectedly, larval populations were also low on the two faba bean varieties. CONCLUSIONS: The results from this study provide some limited evidence for alternative IPM strategies for field peas based on host plant tolerance or resistance within the range of varieties tested. Adult preference and larval development of PLW varied between the different pulse crops with field peas and faba beans being the most susceptible and lentils and chickpeas being the least susceptible. Host plant resistance against PLW could provide more sustainable IPM approaches in the future. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Larva , Pisum sativum , Gorgulhos , Animais , Gorgulhos/crescimento & desenvolvimento , Gorgulhos/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pisum sativum/crescimento & desenvolvimento , Montana , Lens (Planta)/crescimento & desenvolvimento , Cicer/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Vicia faba/crescimento & desenvolvimento , Comportamento Alimentar
17.
Insects ; 14(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37887811

RESUMO

Chemical communication plays a pivotal role in many insect behaviors, including food-seeking, recruitment, the recognition of congeners, reproduction, alarm, territorial marking, and survival [...].

18.
Pest Manag Sci ; 79(6): 2163-2171, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36730090

RESUMO

BACKGROUND: The tarnished plant bug Lygus lineolaris (Palisot de Beauvois) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States. Previous studies have reported the role of different ratios of volatile metathoracic gland components such as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in eliciting low-level attraction of L. lineolaris. In this study, we tested different visual cues (colored sticky cards) in combination with olfactory cues (pheromone blends) to optimize the attraction and capture of L. lineolaris in the field. RESULTS: Red-colored sticky cards were more attractive to L. lineolaris adults than white, blue or yellow cards. Red sticky cards combined with blends of three potential pheromone components attracted significantly more L. lineolaris adults than sticky cards without a blend added. Traps baited with a blend of hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in 4:10:7 ratio, respectively, caught a significantly higher number of L. lineolaris than those baited with 10:4:2 or 7:10:4 blends or an unbaited control in the first week of the experiment. CONCLUSIONS: Combining visual cues (red color) with olfactory cues (pheromone blends) significantly increased the capture of L. lineolaris in the field. This device or a future iteration could contribute towards sustainable and environmentally appropriate early-season monitoring and management of L. lineolaris in the field. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Hemípteros , Heterópteros , Animais , Humanos , Feromônios/farmacologia , Sinais (Psicologia) , Plantas , Gossypium , Butiratos/farmacologia , Butiratos/química
19.
Pest Manag Sci ; 79(10): 3893-3902, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37222566

RESUMO

BACKGROUND: Heavy selection pressure prompted the development of resistance in a serious cotton pest tarnished plant bug (TPB), Lygus Lineolaris in the mid-southern United States. Conversely, a laboratory resistant TPB strain lost its resistance to five pyrethroids and two neonicotinoids after 36 generations without exposure to any insecticide. It is worthwhile to examine why the resistance diminished in this population and determine whether the resistance fade away has practical value for insecticide resistance management in TPB populations. RESULTS: A field-collected resistant TPB population in July (Field-R1) exhibited 3.90-14.37-fold resistance to five pyrethroids and two neonicotinoids, while another field-collected TPB population in April (Field-R2) showed much lower levels of resistance (0.84-3.78-fold) due to the absence of selection pressure. Interestingly, after 36 generations without exposure to insecticide, the resistance levels in the same population [laboratory resistant strain (Lab-R)] significantly decreased to 0.80-2.09-fold. The use of detoxification enzyme inhibitors had synergistic effects on permethrin, bifenthrin and imidacloprid in resistant populations of Lygus lineolaris. The synergism was more pronounced in Field-R2 than laboratory susceptible (Lab-S) and Lab-R TPB population. Moreover, esterase, glutathione S-transferase (GST), and cytochrome P450-monooxygenases (P450) enzyme activities increased significantly by approximately 1.92-, 1.43-, and 1.44-fold in Field-R1, respectively, and 1.38-fold increased P450 enzyme activities in Field-R2 TPB population, compared to the Lab-S TPB. In contrast, the three enzyme activities in the Lab-R strain were not significantly elevated anymore relative to the Lab-S population. Additionally, Field-R1 TPB showed elevated expression levels of certain esterase, GST and P450 genes, respectively, while Field-R2 TPB overexpressed only P450 genes. The elevation of these gene expression levels in Lab-R expectedly diminished to levels close to those of the Lab-S TPB populations. CONCLUSION: Our results indicated that the major mechanism of resistance in TPB populations was metabolic detoxification, and the resistance development was likely conferred by increased gene expressions of esterase, GST, and P450 genes, the fadeaway of the resistance may be caused by reversing the overexpression of esterase, GST and P450. Without pesticide selection, resistant gene (esterase, GST, P450s) frequencies declined, and detoxification enzyme activities returned to Lab-S level, which resulted in the recovery of the susceptibility in the resistant TPB populations. Therefore, pest's self-purging of insecticide resistance becomes strategically desirable for managing resistance in pest populations. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Heterópteros , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Piretrinas/farmacologia , Heterópteros/genética , Neonicotinoides/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/metabolismo , Resistência a Inseticidas/genética
20.
Insects ; 14(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37887817

RESUMO

The tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), has a wide host range of over 700 plant species, including 130 crops of economic importance. During early spring, managing the field edges with weeds and other wild hosts is important in preventing early-season infestations of L. lineolaris in cotton to prevent damage to the squares and other fruiting structures. Scouting fields for L. lineolaris is time- and labor-intensive, and end-user variability associated with field sampling can lead to inaccuracies. Insect traps that combine visual cues and pheromones are more accurate, sustainable, and economically feasible in contrast to traditional insect detection methods. In this study, we investigated the application of red or white sticky cards baited with the female-produced sex pheromone to monitor overwintering L. lineolaris populations in early spring. Field experiments demonstrated that the red sticky cards baited with a pheromone blend containing hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal in 4:10:7 ratio are highly effective in trapping L. lineolaris adults in early spring before the row crops are planted, and in monitoring their movement into a cotton crop. The monitoring of L. lineolaris should help growers to make judicious decisions on insecticide applications to control early pest infestations, thereby reducing economic damage to cotton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA