Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Public Health ; 24(1): 1641, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898445

RESUMO

OBJECTIVES: In Canada, substance-related accidental acute toxicity deaths (AATDs) continue to rise at the national and sub-national levels. However, it is unknown if, where, when, and to what degree AATDs cluster in space, time, and space-time across the country. The objectives of this study were to 1) assess for clusters of AATDs that occurred in Canada during 2016 and 2017 at the national and provincial/territorial (P/T) levels, and 2) examine the substance types detected in AATD cases within each cluster. METHODS: Two years of person-level data on AATDs were abstracted from coroner and medical examiner files using a standardized data collection tool, including the decedent's postal code and municipality information on the places of residence, acute toxicity (AT) event, and death, and the substances detected in the death. Data were combined with Canadian census information to create choropleth maps depicting AATD rates by census division. Spatial scan statistics were used to build Poisson models to identify clusters of high rates (p < 0.05) of AATDs at the national and P/T levels in space, time, and space-time over the study period. AATD cases within clusters were further examined for substance types most present in each cluster. RESULTS: Eight clusters in five regions of Canada at the national level and 24 clusters in 15 regions at the P/T level were identified, highlighting where AATDs occurred at far higher rates than the rest of the country. The risk ratios of identified clusters ranged from 1.28 to 9.62. Substances detected in clusters varied by region and time, however, opioids, stimulants, and alcohol were typically the most commonly detected substances within clusters. CONCLUSION: Our findings are the first in Canada to reveal the geographic disparities in AATDs at national and P/T levels using spatial scan statistics. Rates associated with substance types within each cluster highlight which substance types were most detected in the identified regions. Findings may be used to guide intervention/program planning and provide a picture of the 2016 and 2017 context that can be used for comparisons of the geographic distribution of AATDs and substances with different time periods.


Assuntos
Análise Espaço-Temporal , Humanos , Canadá/epidemiologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/mortalidade , Análise por Conglomerados , Idoso
2.
BMC Public Health ; 24(1): 964, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580942

RESUMO

BACKGROUND: With increased attention to the importance of integrating the One Health approach into zoonotic disease surveillance and response, a greater understanding of the mechanisms to support effective communication and information sharing across animal and human health sectors is needed. The objectives of this qualitative case study were to describe the communication channels used between human and animal health stakeholders and to identify the elements that have enabled the integration of the One Health approach. METHODS: We combined documentary research with interviews with fifteen stakeholders to map the communication channels used in human and swine influenza surveillance in Alberta, Canada, as well as in the response to a human case of H1N2v in 2020. A thematic analysis of the interviews was also used to identify the barriers and facilitators to communication among stakeholders from the animal and human health sectors. RESULTS: When a human case of swine influenza emerged, the response led by the provincial Chief Medical Officer of Health involved players at various levels of government and in the human and animal health sectors. The collaboration of public and animal health laboratories and of the swine sector, in addition to the information available through the surveillance systems in place, was swift and effective. Elements identified as enabling smooth communication between the human and animal health systems included preexisting relationships between the various stakeholders, a relationship of trust between them (e.g., the swine sector and their perception of government structures), the presence of stakeholders acting as permanent liaisons between the ministries of health and agriculture, and stakeholders' understanding of the importance of the One Health approach. CONCLUSIONS: Information flows through formal and informal channels and both structural and relational features that can support rapid and effective communication in infectious disease surveillance and outbreak response.


Assuntos
Comunicação em Saúde , Influenza Humana , Saúde Única , Infecções por Orthomyxoviridae , Humanos , Animais , Suínos , Influenza Humana/epidemiologia , Comunicação , Alberta
3.
BMC Public Health ; 24(1): 1088, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641571

RESUMO

BACKGROUND: Estimating rates of disease importation by travellers is a key activity to assess both the risk to a country from an infectious disease emerging elsewhere in the world and the effectiveness of border measures. We describe a model used to estimate the number of travellers infected with SARS-CoV-2 into Canadian airports in 2021, and assess the impact of pre-departure testing requirements on importation risk. METHODS: A mathematical model estimated the number of essential and non-essential air travellers infected with SARS-CoV-2, with the latter requiring a negative pre-departure test result. The number of travellers arriving infected (i.e. imported cases) depended on air travel volumes, SARS-CoV-2 exposure risk in the departure country, prior infection or vaccine acquired immunity, and, for non-essential travellers, screening from pre-departure molecular testing. Importation risk was estimated weekly from July to November 2021 as the number of imported cases and percent positivity (PP; i.e. imported cases normalised by travel volume). The impact of pre-departure testing was assessed by comparing three scenarios: baseline (pre-departure testing of all non-essential travellers; most probable importation risk given the pre-departure testing requirements), counterfactual scenario 1 (no pre-departure testing of fully vaccinated non-essential travellers), and counterfactual scenario 2 (no pre-departure testing of non-essential travellers). RESULTS: In the baseline scenario, weekly imported cases and PP varied over time, ranging from 145 to 539 cases and 0.15 to 0.28%, respectively. Most cases arrived from the USA, Mexico, the United Kingdom, and France. While modelling suggested that essential travellers had a higher weekly PP (0.37 - 0.65%) than non-essential travellers (0.12 - 0.24%), they contributed fewer weekly cases (62 - 154) than non-essential travellers (84 - 398 per week) given their lower travel volume. Pre-departure testing was estimated to reduce imported cases by one third (counterfactual scenario 1) to one half (counterfactual scenario 2). CONCLUSIONS: The model results highlighted the weekly variation in importation by traveller group (e.g., reason for travel and country of departure) and enabled a framework for measuring the impact of pre-departure testing requirements. Quantifying the contributors of importation risk through mathematical simulation can support the design of appropriate public health policy on border measures.


Assuntos
Viagem Aérea , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Canadá/epidemiologia , Viagem , França
4.
J Anim Ecol ; 89(6): 1375-1386, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31957005

RESUMO

Animal movement influences the spatial spread of directly transmitted wildlife disease through host-host contact structure. Wildlife disease hosts vary in home range-associated foraging and social behaviours, which may increase the spread and intensity of disease outbreaks. The consequences of variation in host home range movement and space use on wildlife disease dynamics are poorly understood, but could help to predict disease spread and determine more effective disease management strategies. We developed a spatially explicit individual-based model to examine the effect of spatiotemporal variation in host home range size on the spatial spread rate, persistence and incidence of rabies virus (RABV) in raccoons (Procyon lotor). We tested the hypothesis that variation in home range size increases RABV spread and decreases vaccination effectiveness in host populations following pathogen invasion into a vaccination zone. We simulated raccoon demography and RABV dynamics across a range of magnitudes and variances in weekly home range size for raccoons. We examined how variable home range size influenced the relative effectiveness of three components of oral rabies vaccination (ORV) programmes targeting raccoons-timing and frequency of bait delivery, width of the ORV zone and proportion of hosts immunized. Variability in weekly home range size increased RABV spread rates by 1.2-fold to 5.2-fold compared to simulations that assumed a fixed home range size. More variable host home range sizes decreased relative vaccination effectiveness by 71% compared to less variable host home range sizes under conventional vaccination conditions. We found that vaccination timing was more influential for vaccination effectiveness than vaccination frequency or vaccination zone width. Our results suggest that variation in wildlife home range movement behaviour increases the spatial spread and incidence of RABV. Our vaccination results underscore the importance of prioritizing individual-level space use and movement data collection to understand wildlife disease dynamics and plan their effective control and elimination.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Administração Oral , Animais , Comportamento de Retorno ao Território Vital , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Guaxinins , Vacinação/veterinária
5.
Foodborne Pathog Dis ; 12(2): 164-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25551332

RESUMO

Acquiring antimicrobial-resistant (AMR) bacteria through consuming contaminated animal food products is an emerging public health concern, though the sources of contamination are not always clear. This study characterized the occurrence of AMR in Escherichia coli from bivalve molluscs and assessed for the possible sources in the Hillsborough river complex of Prince Edward Island, Canada in areas overlapping with an oyster fishery. Multivariable statistical analysis indicated that the probability of detecting E. coli increased as the estimated dosage of animal effluent contamination decreased. Isolates with AMR were only found from sampling sites closest to untreated human effluent sources. Twenty-seven percent (n=6 of 22) of the isolates were pathogenic, with virulence factors consistent with extraintestinal E. coli of human origin. Though there is more evidence of contamination arising from human effluent, more research is needed to identify driving sources.


Assuntos
Antibacterianos/farmacologia , Bivalves/microbiologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Ostreidae/microbiologia , Frutos do Mar/microbiologia , Poluição Química da Água/efeitos adversos , Animais , Oceano Atlântico , Bivalves/química , Bivalves/crescimento & desenvolvimento , Resíduos de Drogas/análise , Monitoramento Ambiental , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Estuários , Pesqueiros , Contaminação de Alimentos/prevenção & controle , Ostreidae/química , Ostreidae/crescimento & desenvolvimento , Filogenia , Ilha do Príncipe Eduardo , Rios , Frutos do Mar/análise , Virulência
6.
Zoonoses Public Health ; 71(3): 304-313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331569

RESUMO

INTRODUCTION: Public health preparedness is based on timely and accurate information. Time series forecasting using disease surveillance data is an important aspect of preparedness. This study compared two approaches of time series forecasting: seasonal auto-regressive integrated moving average (SARIMA) modelling and the artificial neural network (ANN) algorithm. The goal was to model weekly seasonal influenza activity in Canada using SARIMA and compares its predictive accuracy, based on root mean square prediction error (RMSE) and mean absolute prediction error (MAE), to that of an ANN. METHODS: An initial SARIMA model was fit using automated model selection by minimizing the Akaike information criterion (AIC). Further inspection of the autocorrelation function and partial autocorrelation function led to 'manual' model improvements. ANNs were trained iteratively, using an automated process to minimize the RMSE and MAE. RESULTS: A total of 378, 462 cases of influenza was reported in Canada from the 2010-2011 influenza season to the end of the 2019-2020 influenza season, with an average yearly incidence risk of 20.02 per 100,000 population. Automated SARIMA modelling was the better method in terms of forecasting accuracy (per RMSE and MAE). However, the ANN correctly predicted the peak week of disease incidence while the other models did not. CONCLUSION: Both the ANN and SARIMA models have shown to be capable tools in forecasting seasonal influenza activity in Canada. It was shown that applying both in tandem is beneficial, SARIMA better forecasted overall incidence while ANN correctly predicted the peak week.


Assuntos
Influenza Humana , Modelos Estatísticos , Animais , Humanos , Estações do Ano , Saúde Pública , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Canadá/epidemiologia , Incidência , Redes Neurais de Computação , Previsões , China/epidemiologia
7.
Dis Aquat Organ ; 105(2): 149-61, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23872858

RESUMO

Juvenile pink salmon Oncorhynchus gorbuscha and chum salmon O. keta were sampled by beach or purse seine to assess levels of sea lice infestation in the Knight Inlet and Broughton Archipelago regions of coastal British Columbia, Canada, during the months of March to July from 2003 to 2012. Beach seine data were analyzed for sea lice infestation that was described in terms of prevalence, abundance, intensity, and intensity per unit length. The median annual prevalence for chum was 30%, ranging from 14% (in 2008 and 2009) to 73% (in 2004), while for pink salmon, the median was 27% and ranged from 10% (in 2011) to 68% (in 2004). Annual abundance varied from 0.2 to 5 sea lice per fish with a median of 0.47 for chum and from 0.1 to 3 lice (median 0.42) for pink salmon. Annual infestation followed broadly similar trends for both chum and pink salmon. However, the abundance and intensity of Lepeophtheirus salmonis and Caligus clemensi, the 2 main sea lice species of interest, were significantly greater on chum than on pink salmon in around half of the years studied. Logistic regression with random effect was used to model prevalence of sea lice infestation for the combined beach and purse seine data. The model suggested inter-annual variation as well as a spatial clustering effect on the prevalence of sea lice infestation in both chum and pink salmon. Fish length had an effect on prevalence, although the nature of this effect differed according to host species.


Assuntos
Copépodes , Doenças dos Peixes/parasitologia , Salmão , Animais , Colúmbia Britânica/epidemiologia , Doenças dos Peixes/epidemiologia , Fatores de Tempo
8.
Ticks Tick Borne Dis ; 13(6): 102040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137391

RESUMO

Public health management of Lyme disease (LD) is a dynamic challenge in Canada. Climate warming is driving the northward expansion of suitable habitat for the tick vector, Ixodes scapularis. Information about tick population establishment is used to inform the risk of LD but is challenged by sampling biases from surveillance data. Misclassifying areas as having no established tick population underestimates the LD risk classification. We used a logistic regression model at the municipal level to predict the probability of I. scapularis population establishment based on passive tick surveillance data during the period of 2010-2017 in southern Quebec. We tested for the effect of abiotic and biotic factors hypothesized to influence tick biology and ecology. Additional variables controlled for sampling biases in the passive surveillance data. In our final selected model, tick population establishment was positively associated with annual cumulative degree-days > 0°C, precipitation and deer density, and negatively associated with coniferous and mixed forest types. Sampling biases from passive tick surveillance were controlled for using municipal population size and public health instructions on tick submissions. The model performed well as indicated by an area under the curve (AUC) of 0.92, sensitivity of 86% and specificity of 81%. Our model enables prediction of I. scapularis population establishment in areas which lack data from passive tick surveillance and may improve the sensitivity of LD risk categorization in these areas. A more sensitive system of LD risk classification is important for increasing awareness and use of protective measures employed against ticks, and decreasing the morbidity associated with LD.

9.
Can Commun Dis Rep ; 48(10): 438-448, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38162959

RESUMO

Background: Non-pharmaceutical interventions (NPIs) aim to reduce the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections mostly by limiting contacts between people where virus transmission can occur. However, NPIs limit social interactions and have negative impacts on economic, physical, mental and social well-being. It is, therefore, important to assess the impact of NPIs on reducing the number of coronavirus disease 2019 (COVID-19) cases and hospitalizations to justify their use. Methods: Dynamic regression models accounting for autocorrelation in time series data were used with data from six Canadian provinces (British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Québec) to assess 1) the effect of NPIs (measured using a stringency index) on SARS-CoV-2 transmission (measured by the effective reproduction number), and 2) the effect of the number of hospitalized COVID-19 patients on the stringency index. Results: Increasing stringency index was associated with a statistically significant decrease in the transmission of SARS-CoV-2 in Alberta, Saskatchewan, Manitoba, Ontario and Québec. The effect of stringency on transmission was time-lagged in all of these provinces except for Ontario. In all provinces except for Saskatchewan, increasing hospitalization rates were associated with a statistically significant increase in the stringency index. The effect of hospitalization on stringency was time-lagged. Conclusion: These results suggest that NPIs have been effective in Canadian provinces, and that their implementation has been, in part, a response to increasing hospitalization rates of COVID-19 patients.

10.
Int J Health Geogr ; 10: 48, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21810215

RESUMO

BACKGROUND: Protection of public health from rabies is informed by the analysis of surveillance data from human and animal populations. In Canada, public health, agricultural and wildlife agencies at the provincial and federal level are responsible for rabies disease control, and this has led to multiple agency-specific data repositories. Aggregation of agency-specific data into one database application would enable more comprehensive data analyses and effective communication among participating agencies. In Québec, RageDB was developed to house surveillance data for the raccoon rabies variant, representing the next generation in web-based database applications that provide a key resource for the protection of public health. RESULTS: RageDB incorporates data from, and grants access to, all agencies responsible for the surveillance of raccoon rabies in Québec. Technological advancements of RageDB to rabies surveillance databases include (1) automatic integration of multi-agency data and diagnostic results on a daily basis; (2) a web-based data editing interface that enables authorized users to add, edit and extract data; and (3) an interactive dashboard to help visualize data simply and efficiently, in table, chart, and cartographic formats. Furthermore, RageDB stores data from citizens who voluntarily report sightings of rabies suspect animals. We also discuss how sightings data can indicate public perception to the risk of racoon rabies and thus aid in directing the allocation of disease control resources for protecting public health. CONCLUSIONS: RageDB provides an example in the evolution of spatio-temporal database applications for the storage, analysis and communication of disease surveillance data. The database was fast and inexpensive to develop by using open-source technologies, simple and efficient design strategies, and shared web hosting. The database increases communication among agencies collaborating to protect human health from raccoon rabies. Furthermore, health agencies have real-time access to a wide assortment of data documenting new developments in the raccoon rabies epidemic and this enables a more timely and appropriate response.


Assuntos
Bases de Dados Factuais , Internet , Vigilância da População/métodos , Raiva/epidemiologia , Canadá/epidemiologia , Humanos , Software , Interface Usuário-Computador
11.
Can Commun Dis Rep ; 47(56): 243-250, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34220348

RESUMO

BACKGROUND: To maintain control of the coronavirus disease 2019 (COVID-19) epidemic as lockdowns are lifted, it will be crucial to enhance alternative public health measures. For surveillance, it will be necessary to detect a high proportion of any new cases quickly so that they can be isolated, and people who have been exposed to them traced and quarantined. Here we introduce a mathematical approach that can be used to determine how many samples need to be collected per unit area and unit time to detect new clusters of COVID-19 cases at a stage early enough to control an outbreak. METHODS: We present a sample size determination method that uses a relative weighted approach. Given the contribution of COVID-19 test results from sub-populations to detect the disease at a threshold prevalence level to control the outbreak to 1) determine if the expected number of weekly samples provided from current healthcare-based surveillance for respiratory virus infections may provide a sample size that is already adequate to detect new clusters of COVID-19 and, if not, 2) to determine how many additional weekly samples were needed from volunteer sampling. RESULTS: In a demonstration of our method at the weekly and Canadian provincial and territorial (P/T) levels, we found that only the more populous P/T have sufficient testing numbers from healthcare visits for respiratory illness to detect COVID-19 at our target prevalence level-assumed to be high enough to identify and control new clusters. Furthermore, detection of COVID-19 is most efficient (fewer samples required) when surveillance focuses on healthcare symptomatic testing demand. In the volunteer populations: the higher the contact rates; the higher the expected prevalence level; and the fewer the samples were needed to detect COVID-19 at a predetermined threshold level. CONCLUSION: This study introduces a targeted surveillance strategy, combining both passive and active surveillance samples, to determine how many samples to collect per unit area and unit time to detect new clusters of COVID-19 cases. The goal of this strategy is to allow for early enough detection to control an outbreak.

12.
Viruses ; 13(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672496

RESUMO

We applied the model-guided fieldwork framework to the Caribbean mongoose rabies system by parametrizing a spatially-explicit, individual-based model, and by performing an uncertainty analysis designed to identify parameters for which additional empirical data are most needed. Our analysis revealed important variation in output variables characterizing rabies dynamics, namely rabies persistence, exposure level, spatiotemporal distribution, and prevalence. Among epidemiological parameters, rabies transmission rate was the most influential, followed by rabies mortality and location, and size of the initial infection. The most influential landscape parameters included habitat-specific carrying capacities, landscape heterogeneity, and the level of resistance to dispersal associated with topography. Movement variables, including juvenile dispersal, adult fine-scale movement distances, and home range size, as well as life history traits such as age of independence, birth seasonality, and age- and sex-specific mortality were other important drivers of rabies dynamics. We discuss results in the context of mongoose ecology and its influence on disease transmission dynamics. Finally, we suggest empirical approaches and study design specificities that would provide optimal contributing data addressing the knowledge gaps identified by our approach, and would increase our potential to use epidemiological models to guide mongoose rabies control and management in the Caribbean.


Assuntos
Herpestidae/virologia , Raiva/veterinária , Distribuição Animal , Animais , Região do Caribe/epidemiologia , Feminino , Herpestidae/fisiologia , Masculino , Modelos Biológicos , Raiva/epidemiologia , Raiva/transmissão , Raiva/virologia , Vírus da Raiva/classificação , Vírus da Raiva/genética , Vírus da Raiva/isolamento & purificação , Vírus da Raiva/fisiologia
13.
Can Commun Dis Rep ; 46(6): 169-173, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32673381

RESUMO

Advancements in artificial intelligence (AI), more precisely the subfield of machine learning, and their applications to open-source internet data, such as social media, are growing faster than the management of ethical issues for use in society. An ethical framework helps scientists and policy makers consider ethics in their fields of practice, legitimize their work and protect members of the data-generating public. A central question for advancing the ethical framework is whether or not Tweets, Facebook posts and other open-source social media data generated by the public represent a human or not. The objective of this paper is to highlight ethical issues that the public health sector will be or is already confronting when using social media data in practice. The issues include informed consent, privacy, anonymization and balancing these issues with the benefits of using social media data for the common good. Current ethical frameworks need to provide guidance for addressing issues arising from the use of social media data in the public health sector. Discussions in this area should occur while the application of open-source data is still relatively new, and they should also keep pace as other problems arise from ongoing technological change.

14.
Can Commun Dis Rep ; 46(6): 186-191, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382063

RESUMO

The focus of this article is the application of natural language processing (NLP) for information extraction in event-based surveillance (EBS) systems. We describe common information extraction applications from open-source news articles and media sources in EBS systems, methods, value in public health, challenges and emerging developments.

15.
Mol Ecol ; 18(1): 43-53, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19140963

RESUMO

The correlation of landscape features with genetic discontinuities reveals barriers to dispersal that can contribute to understanding present and future spread of wildlife diseases. This knowledge can then be used for targeting control efforts. The impact of natural barriers on raccoon dispersal was assessed through genetic analysis of samples from two regions, Niagara (N = 666) and St. Lawrence (N = 802). These areas are transected by major rivers and are at the northern front of a raccoon rabies epizootic. Genetic clusters were identified in each region using Bayesian clustering algorithms. In the Niagara region, two clusters were identified corresponding to either side of the Niagara River. For the St. Lawrence region, spatially congruent clusters were not identified, despite the presence of the intervening St. Lawrence River. These genetic data are consistent with raccoon rabies incidence data where rabies has been detected across the St. Lawrence River in Ontario while no cases have been detected in Ontario across the Niagara River. This is despite expectations of rabies incidence in Niagara before the St. Lawrence based on the progression of rabies from New York. The results from the two regions suggest different permeabilities to raccoons between New York and Ontario that may be attributed to the rivers. However, other factors have also been explored that could contribute to this difference between these study sites including the shape of the landscape and resource distribution.


Assuntos
Fluxo Gênico , Epidemiologia Molecular , Raiva/veterinária , Guaxinins/genética , Alelos , Animais , Teorema de Bayes , Análise por Conglomerados , Variação Genética , Genética Populacional , Repetições de Microssatélites , New York/epidemiologia , Ontário/epidemiologia , Vigilância da População , Raiva/epidemiologia , Raiva/transmissão , Guaxinins/virologia , Rios , Análise de Sequência de DNA
16.
Prev Vet Med ; 86(1-2): 107-23, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18440659

RESUMO

Landscape barriers influence movement patterns of animals, which in turn, affect spatio-temporal spread of infectious wildlife disease. We compare genetic data from computer simulations to those acquired from field samples to measure the effect of a landscape barrier on raccoon (Procyon lotor) movement, enabling risk assessment of raccoon rabies disease spread across the Niagara River from New York State into Ontario, an area currently uninfected by rabies. An individual-based spatially explicit model is used to simulate the expansion of a raccoon population to cross the Niagara River, for different permeabilities of the river to raccoon crossings. Since the model records individual raccoon genetics, the genetic population structure of neutral mitochondrial DNA haplotypes are characterised in the expanding population, every 25 years, using a genetic distance measure, phi ST, Mantel tests and a gene diversity measure. The river barrier effect is assessed by comparing genetic measures computed from model outputs to those calculated from 166 raccoons recently sampled from the same landscape. The "best fit" between modelled scenarios and field data indicate the river prevents 50% of attempts to cross the river. Founder effects dominated the colonizing genetic population structure, and, as the river barrier effect increased, its genetic diversity decreased. Using gene flow to calibrate the effect of the river as a barrier to movement provides an estimate of the effect of a river in reducing the likelihood of cross-river infection. Including individual genetic markers in simulation modelling benefits investigations of disease spread and control.


Assuntos
DNA Mitocondrial/análise , Variação Genética , Vigilância da População/métodos , Raiva/veterinária , Guaxinins/genética , Guaxinins/virologia , Animais , Simulação por Computador , Demografia , Feminino , Haplótipos , Masculino , Epidemiologia Molecular , New York , Ontário , Raiva/prevenção & controle , Raiva/transmissão , Medição de Risco , Rios , Conglomerados Espaço-Temporais
17.
Parasit Vectors ; 11(1): 290, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739467

RESUMO

BACKGROUND: Zika virus (ZIKV) spread rapidly in the Americas in 2015. Targeting effective public health interventions for inhabitants of, and travellers to and from, affected countries depends on understanding the risk of ZIKV emergence (and re-emergence) at the local scale. We explore the extent to which environmental, social and neighbourhood disease intensity variables influenced emergence dynamics. Our objective was to characterise population vulnerability given the potential for sustained autochthonous ZIKV transmission and the timing of emergence. Logistic regression models estimated the probability of reporting at least one case of ZIKV in a given municipality over the course of the study period as an indicator for sustained transmission; while accelerated failure time (AFT) survival models estimated the time to a first reported case of ZIKV in week t for a given municipality as an indicator for timing of emergence. RESULTS: Sustained autochthonous ZIKV transmission was best described at the temporal scale of the study period (almost one year), such that high levels of study period precipitation and low mean study period temperature reduced the probability. Timing of ZIKV emergence was best described at the weekly scale for precipitation in that high precipitation in the current week delayed reporting. Both modelling approaches detected an effect of high poverty on reducing/slowing case detection, especially when inter-municipal road connectivity was low. We also found that proximity to municipalities reporting ZIKV had an effect to reduce timing of emergence when located, on average, less than 100 km away. CONCLUSIONS: The different modelling approaches help distinguish between large temporal scale factors driving vector habitat suitability and short temporal scale factors affecting the speed of spread. We find evidence for inter-municipal movements of infected people as a local-scale driver of spatial spread. The negative association with poverty suggests reduced case reporting in poorer areas. Overall, relatively simplistic models may be able to predict the vulnerability of populations to autochthonous ZIKV transmission at the local scale.


Assuntos
Meio Ambiente , Saúde Pública , Mudança Social , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , América/epidemiologia , Animais , Epidemias , Humanos , Modelos Logísticos , Mosquitos Vetores/virologia , Medição de Risco , Viagem , Zika virus/isolamento & purificação , Zika virus/fisiologia , Infecção por Zika virus/virologia
18.
Front Vet Sci ; 5: 269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425996

RESUMO

Connectivity in an aquatic setting is determined by a combination of hydrodynamic circulation and the biology of the organisms driving linkages. These complex processes can be simulated in coupled biological-physical models. The physical model refers to an underlying circulation model defined by spatially-explicit nodes, often incorporating a particle-tracking model. The particles can then be given biological parameters or behaviors (such as maturity and/or survivability rates, diel vertical migrations, avoidance, or seeking behaviors). The output of the bio-physical models can then be used to quantify connectivity among the nodes emitting and/or receiving the particles. Here we propose a method that makes use of kernel density estimation (KDE) on the output of a particle-tracking model, to quantify the infection or infestation pressure (IP) that each node causes on the surrounding area. Because IP is the product of both exposure time and the concentration of infectious agent particles, using KDE (which also combine elements of time and space), more accurately captures IP. This method is especially useful for those interested in infectious agent networks, a situation where IP is a superior measure of connectivity than the probability of particles from each node reaching other nodes. Here we illustrate the method by modeling the connectivity of salmon farms via sea lice larvae in the Broughton Archipelago, British Columbia, Canada. Analysis revealed evidence of two sub-networks of farms connected via a single farm, and evidence that the highest IP from a given emitting farm was often tens of kilometers or more away from that farm. We also classified farms as net emitters, receivers, or balanced, based on their structural role within the network. By better understanding how these salmon farms are connected to each other via their sea lice larvae, we can effectively focus management efforts to minimize the spread of sea lice between farms, advise on future site locations and coordinated treatment efforts, and minimize any impact of farms on juvenile wild salmon. The method has wide applicability for any system where capturing infectious agent networks can provide useful guidance for management or preventative planning decisions.

19.
PLoS One ; 13(8): e0201924, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30133502

RESUMO

Climate change is driving emergence and establishment of Ixodes scapularis, the main vector of Lyme disease in Québec, Canada. As for the black-legged tick, I. scapularis Say, global warming may also favor northward expansion of other species of medically important ticks. The aims of this study were to determine (1) current diversity and abundance of ticks of public health significance other than I. scapularis, (2) sex and age of the human population bitten by these ticks (3), and the seasonal and geographic pattern of their occurrence. From 2007 to 2015, twelve tick species other than I. scapularis were submitted in the Québec passive tick surveillance program. Of these 9243 ticks, 91.2% were Ixodes cookei, 4.1% were Dermacentor variabilis, 4.0% were Rhipicephalus sanguineus and 0.7% were Amblyomma americanum. The combined annual proportion of submitted I. cookei, D. variabilis, R. sanguineus and A. americanum ticks in passive surveillance rose from 6.1% in 2007 to 16.0% in 2015 and an annual growing trend was observed for each tick species. The number of municipalities where I. cookei ticks were acquired rose from 104 to 197 during the same period. Of the 862 people bitten by these ticks, 43.3% were I. cookei ticks removed from children aged < 10 years. These findings demonstrate the need for surveillance of all the tick species of medical importance in Québec, particularly because climate may increase their abundance and geographic ranges, increasing the risk to the public of the diseases they transmit.


Assuntos
Ixodes , Densidade Demográfica , Vigilância em Saúde Pública , Infestações por Carrapato/epidemiologia , Animais , Feminino , Humanos , Ixodes/classificação , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Quebeque/epidemiologia
20.
Environ Health Perspect ; 126(4): 047008, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29671475

RESUMO

BACKGROUND: The risk of contracting Lyme disease (LD) can vary spatially because of spatial heterogeneity in risk factors such as social-behavior and exposure to ecological risk factors. Integrating these risk factors to inform decision-making should therefore increase the effectiveness of mitigation interventions. OBJECTIVES: The objective of this study was to develop an integrated social-behavioral and ecological risk-mapping approach to identify priority areas for LD interventions. METHODS: The study was conducted in the Montérégie region of Southern Quebec, Canada, where LD is a newly endemic disease. Spatial variation in LD knowledge, risk perceptions, and behaviors in the population were measured using web survey data collected in 2012. These data were used as a proxy for the social-behavioral component of risk. Tick vector population densities were measured in the environment during field surveillance from 2007 to 2012 to provide an index of the ecological component of risk. Social-behavioral and ecological components of risk were combined with human population density to create integrated risk maps. Map predictions were validated by testing the association between high-risk areas and the current spatial distribution of human LD cases. RESULTS: Social-behavioral and ecological components of LD risk had markedly different distributions within the study region, suggesting that both factors should be considered for locally adapted interventions. The occurrence of human LD cases in a municipality was positively associated with tick density (p<0.01) but was not significantly associated with social-behavioral risk. CONCLUSION: This study is an applied demonstration of how integrated social-behavioral and ecological risk maps can be created to assist decision-making. Social survey data are a valuable but underutilized source of information for understanding regional variation in LD exposure, and integrating this information into risk maps provides a novel approach for prioritizing and adapting interventions to the local characteristics of target populations. https://doi.org/10.1289/EHP1943.


Assuntos
Mapeamento Geográfico , Doença de Lyme/epidemiologia , Medição de Risco/métodos , Humanos , Doença de Lyme/microbiologia , Prevalência , Quebeque/epidemiologia , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA