Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2313971121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38662573

RESUMO

There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built-environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well-being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life-altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human-associated diseases. Sustained trans-disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.


Assuntos
Ambiente Construído , Microbiota , Animais , Humanos , Microbiota/fisiologia
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33472859

RESUMO

The COVID-19 pandemic has the potential to affect the human microbiome in infected and uninfected individuals, having a substantial impact on human health over the long term. This pandemic intersects with a decades-long decline in microbial diversity and ancestral microbes due to hygiene, antibiotics, and urban living (the hygiene hypothesis). High-risk groups succumbing to COVID-19 include those with preexisting conditions, such as diabetes and obesity, which are also associated with microbiome abnormalities. Current pandemic control measures and practices will have broad, uneven, and potentially long-term effects for the human microbiome across the planet, given the implementation of physical separation, extensive hygiene, travel barriers, and other measures that influence overall microbial loss and inability for reinoculation. Although much remains uncertain or unknown about the virus and its consequences, implementing pandemic control practices could significantly affect the microbiome. In this Perspective, we explore many facets of COVID-19-induced societal changes and their possible effects on the microbiome, and discuss current and future challenges regarding the interplay between this pandemic and the microbiome. Recent recognition of the microbiome's influence on human health makes it critical to consider both how the microbiome, shaped by biosocial processes, affects susceptibility to the coronavirus and, conversely, how COVID-19 disease and prevention measures may affect the microbiome. This knowledge may prove key in prevention and treatment, and long-term biological and social outcomes of this pandemic.


Assuntos
COVID-19/microbiologia , Hipótese da Higiene , Microbiota , Idoso , Anti-Infecciosos/uso terapêutico , COVID-19/mortalidade , Ingestão de Alimentos , Feminino , Humanos , Lactente , Controle de Infecções/métodos , Masculino , Microbiota/efeitos dos fármacos , Distanciamento Físico , Gravidez
3.
PLoS Biol ; 16(2): e2005358, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29425197

RESUMO

Today, the three classical biological explanations of the individual self--the immune system, the brain, the genome--are being challenged by the new field of microbiome research. Evidence shows that our resident microbes orchestrate the adaptive immune system, influence the brain, and contribute more gene functions than our own genome. The realization that humans are not individual, discrete entities but rather the outcome of ever-changing interactions with microorganisms has consequences beyond the biological disciplines. In particular, it calls into question the assumption that distinctive human traits set us apart from all other animals--and therefore also the traditional disciplinary divisions between the arts and the sciences.


Assuntos
Variação Biológica Individual , Microbiota , Imunidade Adaptativa , Encéfalo/fisiologia , Genoma , Humanos
4.
Bioessays ; 41(10): e1800268, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31099408

RESUMO

Does exploration of the gut microbiota-brain axis expand our understanding of what it means to be human? Recognition and conceptualization of a gut microbiota-brain axis challenges our study of the nervous system. Here, integrating gut microbiota-brain research into the metaorganism model is proposed. The metaorganism-an expanded, dynamic unit comprising the host and commensal organisms-asserts a radical blurring between man and microbe. The metaorganism nervous system interacts with the exterior world through microbial-colored lenses. Ongoing studies have reported that gut microbes contribute to brain function and pathologies, even shaping higher neurological functions. How will continued collaborative efforts (e.g., between neurobiology and microbiology), including partnerships with the arts (e.g., philosophy), contribute to the knowledge of microbe-to-mind interactions? While this is not a systemic review, this nascent field is briefly described, highlighting ongoing challenges and recommendations for emerging gut microbiota-brain research. Also see the video abstract here https://youtu.be/lP9gOW8StXg.


Assuntos
Encéfalo/fisiologia , Microbioma Gastrointestinal , Animais , Humanos
5.
PLoS Biol ; 16(9): e2006974, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30208025

Assuntos
Microbiota , Humanos
6.
J Nerv Ment Dis ; 199(8): 592-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21814086

RESUMO

Medical anthropology is the smallest and perhaps least understood of the social and behavioral sciences of medicine. In this article, we indicate what makes the field distinctive and describe significant developments during the past two decades.


Assuntos
Antropologia , Medicina , Ciências do Comportamento , Humanos
7.
Perspect Public Health ; 136(4): 202-4, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27354501
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA