Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(41): E9580-E9589, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30257941

RESUMO

Triple-negative breast cancer (TNBC) accounts for a disproportionately high number of deaths due to a lack of targeted therapies and an increased likelihood of distant recurrence. Estrogen receptor beta (ERß), a well-characterized tumor suppressor, is expressed in 30% of TNBCs, and its expression is associated with improved patient outcomes. We demonstrate that therapeutic activation of ERß elicits potent anticancer effects in TNBC through the induction of a family of secreted proteins known as the cystatins, which function to inhibit canonical TGFß signaling and suppress metastatic phenotypes both in vitro and in vivo. These data reveal the involvement of cystatins in suppressing breast cancer progression and highlight the value of ERß-targeted therapies for the treatment of TNBC patients.


Assuntos
Cistatinas/metabolismo , Receptor beta de Estrogênio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Cistatinas/genética , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Feminino , Humanos , Camundongos , Fator de Crescimento Transformador beta/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/genética
2.
Appl Environ Microbiol ; 80(14): 4277-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814780

RESUMO

Xenorhabdus nematophila engages in a mutualistic association with the nematode Steinernema carpocapsae. The nematode invades and traverses the gut of susceptible insects. X. nematophila is released in the insect blood (hemolymph), where it suppresses host immune responses and functions as a pathogen. X. nematophila produces diverse antimicrobials in laboratory cultures. The natural competitors that X. nematophila encounters in the hemolymph and the role of antimicrobials in interspecies competition in the host are poorly understood. We show that gut microbes translocate into the hemolymph when the nematode penetrates the insect intestine. During natural infection, Staphylococcus saprophyticus was initially present and subsequently disappeared from the hemolymph, while Enterococcus faecalis proliferated. S. saprophyticus was sensitive to X. nematophila antibiotics and was eliminated from the hemolymph when coinjected with X. nematophila. In contrast, E. faecalis was relatively resistant to X. nematophila antibiotics. When injected by itself, E. faecalis persisted (~10(3) CFU/ml), but when coinjected with X. nematophila, it proliferated to ~10(9) CFU/ml. Injection of E. faecalis into the insect caused the upregulation of an insect antimicrobial peptide, while the transcript levels were suppressed when E. faecalis was coinjected with X. nematophila. Its relative antibiotic resistance together with suppression of the host immune system by X. nematophila may account for the growth of E. faecalis. At higher injected levels (10(6) CFU/insect), E. faecalis could kill insects, suggesting that it may contribute to virulence in an X. nematophila infection. These findings provide new insights into the competitive events that occur early in infection after S. carpocapsae invades the host hemocoel.


Assuntos
Hemolinfa/microbiologia , Manduca/microbiologia , Manduca/parasitologia , Nematoides/patogenicidade , Xenorhabdus/patogenicidade , Animais , Antibacterianos/farmacologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/isolamento & purificação , Intestinos/microbiologia , Intestinos/parasitologia , Larva/microbiologia , Larva/parasitologia , Testes de Sensibilidade Microbiana , Dinâmica Populacional , Simbiose , Xenorhabdus/crescimento & desenvolvimento , Xenorhabdus/isolamento & purificação
3.
BMC Cancer ; 14: 749, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25288324

RESUMO

BACKGROUND: The role and clinical value of ERß1 expression is controversial and recent data demonstrates that many ERß antibodies are insensitive and/or non-specific. Therefore, we sought to comprehensively characterize ERß1 expression across all sub-types of breast cancer using a validated antibody and determine the roles of this receptor in mediating response to multiple forms of endocrine therapy both in the presence and absence of ERα expression. METHODS: Nuclear and cytoplasmic expression patterns of ERß1 were analyzed in three patient cohorts, including a retrospective analysis of a prospective adjuvant tamoxifen study and a triple negative breast cancer cohort. To investigate the utility of therapeutically targeting ERß1, we generated multiple ERß1 expressing cell model systems and determined their proliferative responses following anti-estrogenic or ERß-specific agonist exposure. RESULTS: Nuclear ERß1 was shown to be expressed across all major sub-types of breast cancer, including 25% of triple negative breast cancers and 33% of ER-positive tumors, and was associated with significantly improved outcomes in ERα-positive tamoxifen-treated patients. In agreement with these observations, ERß1 expression sensitized ERα-positive breast cancer cells to the anti-cancer effects of selective estrogen receptor modulators (SERMs). However, in the absence of ERα expression, ERß-specific agonists potently inhibited cell proliferation rates while anti-estrogenic therapies were ineffective. CONCLUSIONS: Using a validated antibody, we have confirmed that nuclear ERß1 expression is commonly present in breast cancer and is prognostic in tamoxifen-treated patients. Using multiple breast cancer cell lines, ERß appears to be a novel therapeutic target. However, the efficacy of SERMs and ERß-specific agonists differ as a function of ERα expression.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Antagonistas de Estrogênios/farmacologia , Receptor beta de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Feminino , Humanos , Células MCF-7 , Pessoa de Meia-Idade
4.
Oncotarget ; 8(57): 96506-96521, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228549

RESUMO

Triple negative breast cancer (TNBC), which comprises approximately 15% of all primary breast cancer diagnoses, lacks estrogen receptor alpha, progesterone receptor and human epidermal growth factor receptor 2 expression. However, we, and others, have demonstrated that approximately 30% of TNBCs express estrogen receptor beta (ERß), a nuclear hormone receptor and potential drug target. Treatment of ERß expressing MDA-MB-231 cells with estrogen or the ERß selective agonist, LY500307, was shown to result in suppression of cell proliferation. This inhibitory effect was due to blockade of cell cycle progression. In vivo, estrogen treatment significantly repressed the growth of ERß expressing MDA-MB-231 cell line xenografts. Gene expression studies and ingenuity pathway analysis identified a network of ERß down-regulated genes involved in cell cycle progression including CDK1, cyclin B and cyclin H. siRNA mediated knockdown or drug inhibition of CDK1 and CDK7 in TNBC cells resulted in substantial decreases in proliferation regardless of ERß expression. These data suggest that the tumor suppressive effects of ERß in TNBC result from inhibition of cell cycle progression, effects that are in part mediated by suppression of CDK1/7. Furthermore, these data indicate that blockade of CDK1/7 activity in TNBC may be of therapeutic benefit, an area of study that has yet to be explored.

5.
PLoS One ; 9(5): e98219, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24853369

RESUMO

Endoxifen has recently been identified as the predominant active metabolite of tamoxifen and is currently being developed as a novel hormonal therapy for the treatment of endocrine sensitive breast cancer. Based on past studies in breast cancer cells and model systems, endoxifen classically functions as an anti-estrogenic compound. Since estrogen and estrogen receptors play critical roles in mediating bone homeostasis, and endoxifen is currently being implemented as a novel breast cancer therapy, we sought to comprehensively characterize the in vivo effects of endoxifen on the mouse skeleton. Two month old ovariectomized C57BL/6 mice were treated with vehicle or 50 mg/kg/day endoxifen hydrochloride via oral gavage for 45 days. Animals were analyzed by dual-energy x-ray absorptiometry, peripheral quantitative computed tomography, micro-computed tomography and histomorphometry. Serum from control and endoxifen treated mice was evaluated for bone resorption and bone formation markers. Gene expression changes were monitored in osteoblasts, osteoclasts and the cortical shells of long bones from endoxifen treated mice and in a human fetal osteoblast cell line. Endoxifen treatment led to significantly higher bone mineral density and bone mineral content throughout the skeleton relative to control animals. Endoxifen treatment also resulted in increased numbers of osteoblasts and osteoclasts per tissue area, which was corroborated by increased serum levels of bone formation and resorption markers. Finally, endoxifen induced the expression of osteoblast, osteoclast and osteocyte marker genes. These studies are the first to examine the in vivo and in vitro impacts of endoxifen on bone and our results demonstrate that endoxifen increases cancellous as well as cortical bone mass in ovariectomized mice, effects that may have implications for postmenopausal breast cancer patients.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Osso e Ossos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Tamoxifeno/análogos & derivados , Animais , Antineoplásicos Hormonais/farmacologia , Sequência de Bases , Primers do DNA , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Reação em Cadeia da Polimerase , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA