RESUMO
Lignocellulosic material is a leading carbon source for economically viable biotechnological processes; however, compounds such furfural and acetic acid exhibit toxicity to yeasts. Nonetheless, research about the molecular mechanism of furfural and acetic acid toxicity is still scarce in yeasts like Scheffersomyces stipitis. Thus, this study aims to elucidate the impact of furfural and acetic acid on S. stipitis regarding bioenergetic and fermentation parameters. Here, we provide evidence that furfural and acetic acid induce a delay in cell growth and extend the lag phase. The mitochondrial membrane potential decreased in all treatments with no significant differences between inhibitors or concentrations. Interestingly, reactive oxygen species increased when the inhibitor concentrations were from 0.1 to 0.3 % (v/v). The glycolytic flux was not significantly (p > 0.05) altered by acetic acid, but furfural caused different effects. Ethanol production decreased significantly (4.32 g·L-1 in furfural and 5.06 g·L-1 in acetic acid) compared to the control (26.3 g·L-1). In contrast, biomass levels were not significantly different in most treatments compared to the control. This study enhances our understanding of the effects of furfural and acetic acid at the mitochondrial level in a pentose-fermenting yeast like S. stipitis.
Assuntos
Ácido Acético , Metabolismo Energético , Fermentação , Furaldeído , Saccharomycetales , Furaldeído/farmacologia , Furaldeído/metabolismo , Ácido Acético/farmacologia , Ácido Acético/metabolismo , Metabolismo Energético/efeitos dos fármacos , Saccharomycetales/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/crescimento & desenvolvimento , Etanol/metabolismo , Etanol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Lignina/metabolismo , Biomassa , Glicólise/efeitos dos fármacosRESUMO
Quercetin is a flavonoid with promising therapeutic applications; nonetheless, the phenotype exerted in some diseases is contradictory. For instance, anticancer properties may be explained by a cytotoxic mechanism, whereas antioxidant-related neuroprotection is a pro-survival process. According to the available literature, quercetin exerts a redox interaction with the electron transport chain (ETC) in the mitochondrion, affecting its membrane potential. It also affects ATP generation by oxidative phosphorylation, where ATP deprivation could partly explain its cytotoxic effect. Moreover, quercetin may support the generation of free radicals through redox reactions, causing a prooxidant effect. The nutrimental stress and prooxidant effect induced by quercetin might promote pro-survival properties such as antioxidant processes. Thus, in this review, we discuss the evidence supporting that quercetin redox interaction with the ETC could explain its beneficial and toxic properties.
RESUMO
Quercetin is a flavonol ubiquitously present in fruits and vegetables that shows a potential therapeutic use in non-transmissible chronic diseases, such as cancer and diabetes. Although this phytochemical has shown promising health benefits, the molecular mechanism behind this compound is still unclear. Interestingly, quercetin displays toxic properties against phylogenetically distant organisms such as bacteria and eukaryotic cells, suggesting that its molecular target resides on a highly conserved pathway. The cytotoxicity of quercetin could be explained by energy depletion occasioned by mitochondrial respiration impairment and its concomitant pleiotropic effect. Thereby, the molecular basis of quercetin cytotoxicity could shed light on potential molecular mechanisms associated with its health benefits. Nonetheless, the evidence supporting this hypothesis is still lacking. Thus, this study aimed to evaluate whether quercetin supplementation affects mitochondrial respiration and whether this is related to quercetin cytotoxicity. Saccharomyces cerevisiae was used as a study model to assess the effect of quercetin on energetic metabolism. Herein, we provide evidence that quercetin supplementation: (1) decreased the exponential growth of S. cerevisiae in a glucose-dependent manner; (2) affected diauxic growth in a similar way to antimycin A (complex III inhibitor of electron transport chain); (3) suppressed the growth of S. cerevisiae cultures supplemented with non-fermentable carbon sources (glycerol and lactate); (4) promoted a glucose-dependent inhibition of the basal, maximal, and ATP-linked respiration; (5) diminished complex II and IV activities. Altogether, these data indicate that quercetin disturbs mitochondrial respiration between the ubiquinone pool and cytochrome c, and this phenotype is associated with its cytotoxic properties.
Assuntos
Quercetina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Mitocôndrias/metabolismo , Glucose/metabolismo , RespiraçãoRESUMO
The antioxidant phenotype caused by resveratrol has been recognized as a key piece in the health benefits exerted by this phytochemical in diseases related to aging. It has recently been proposed that a mitochondrial pro-oxidant mechanism could be the cause of resveratrol antioxidant properties. In this regard, the hypothesis that resveratrol impedes electron transport to complex III of the electron transport chain as its main target suggests that resveratrol could increase reactive oxygen species (ROS) generation through reverse electron transport or by the semiquinones formation. This idea also explains that cells respond to resveratrol oxidative damage, inducing their antioxidant systems. Moreover, resveratrol pro-oxidant properties could accelerate the aging process, according to the free radical theory of aging, which postulates that organism's age due to the accumulation of the harmful effects of ROS in cells. Nonetheless, there is no evidence linking the chronological lifespan (CLS) shorten occasioned by resveratrol with a pro-oxidant mechanism. Hence, this study aimed to evaluate whether resveratrol shortens the CLS of Saccharomyces cerevisiae due to a pro-oxidant activity. Herein, we provide evidence that supplementation with 100 µM of resveratrol at 5% glucose: (1) shortened the CLS of ctt1Δ and yap1Δ strains; (2) decreased ROS levels and increased the catalase activity in WT strain; (3) maintained unaffected the ROS levels and did not change the catalase activity in ctt1Δ strain; and (4) lessened the exponential growth of ctt1Δ strain, which was restored with the adding of reduced glutathione. These results indicate that resveratrol decreases CLS by a pro-oxidant mechanism.
Assuntos
Longevidade , Saccharomyces cerevisiae , Antioxidantes/farmacologia , Catalase/metabolismo , Catalase/farmacologia , Glucose/farmacologia , Longevidade/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio , Resveratrol/farmacologia , Saccharomyces cerevisiae/genéticaRESUMO
The increase in consumer demand for more sustainable packaging materials represents an opportunity for biopolymers utilization as an alternative to reduce the environmental impact of plastics. Cellulose (C) and chitosan (CH) are attractive biopolymers for film production due to their high abundance, biodegradability and low toxicity. The objective of this work was to incorporate cellulose nanocrystals (NC) and C extracted from corn cobs in films added with chitosan and to evaluate their properties and biodegradability. The physicochemical (water vapor barrier, moisture content, water solubility and color) and mechanical properties of the films were evaluated. Component interactions using Fourier-transform infrared (FTIR) spectroscopy, surface topography by means of atomic force microscopy (AFM), biodegradability utilizing a fungal mixture and compostability by burying film discs in compost were also determined. The C-NC-CH compared to C-CH films presented a lower moisture content (17.19 ± 1.11% and 20.07 ± 1.01%; w/w, respectively) and water vapor permeability (g m−1 s−1 Pa−1 × 10−12: 1.05 ± 0.15 and 1.57 ± 0.10; w/w, respectively) associated with the NC addition. Significantly high roughness (Rq = 4.90 ± 0.98 nm) was observed in films added to NC, suggesting a decreased homogeneity. The biodegradability test showed larger fungal growth on C-CH films than on CH films (>60% and <10%, respectively) due to the antifungal properties of CH. C extracted from corn cobs resulted in a good option as an alternative packaging material, while the use of NC improved the luminosity and water barrier properties of C-CH films, promoting strong interactions due to hydrogen bonds.
Assuntos
Quitosana , Nanopartículas , Antifúngicos , Biopolímeros , Celulose/química , Quitosana/química , Embalagem de Alimentos/métodos , Permeabilidade , Plásticos , Vapor , Resistência à Tração , Zea mays/químicaRESUMO
Beef is a fundamental part of the human diet, but it is highly susceptible to microbiological and physicochemical deterioration which decrease its shelf life. This work aimed to formulate an active edible film (AEF) incorporated with amino-functionalized mesoporous silica nanoparticles (A-MSN) loaded with Mexican oregano (Lippia graveolens Kunth) essential oil (OEO) and to evaluate its effect as a coating on fresh beef quality during refrigerated storage. The AEF was based on amaranth protein isolate (API) and chitosan (CH) (4:1, w/w), to which OEO emulsified or encapsulated in A-MSN was added. The tensile strength (36.91 ± 1.37 MPa), Young's modulus (1354.80 ± 64.6 MPa), and elongation (4.71%) parameters of AEF made it comparable with synthetic films. The antimicrobial activity of AEF against E. coli O157:H7 was improved by adding 9% (w/w) encapsulated OEO, and interactions of glycerol and A-MSN with the polymeric matrix were observed by FT-IR spectroscopy. In fresh beef, after 42 days, AEF reduced the population growth (Log CFU/cm2, relative to uncoated fresh beef) of Brochothrix thermosphacta (5.5), Escherichia coli (3.5), Pseudomonas spp. (2.8), and aerobic mesophilic bacteria (6.8). After 21 days, odor acceptability of coated fresh beef was improved, thus, enlarging the shelf life of the beef and demonstrating the preservation capacity of this film.
Assuntos
Filmes Comestíveis , Lippia , Nanopartículas , Óleos Voláteis , Origanum , Animais , Bovinos , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Lippia/química , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Embalagem de Alimentos/métodosRESUMO
The switch between mitochondrial respiration and fermentation as the main ATP production pathway through an increase glycolytic flux is known as the Crabtree effect. The elucidation of the molecular mechanism of the Crabtree effect may have important applications in ethanol production and lay the groundwork for the Warburg effect, which is essential in the molecular etiology of cancer. A key piece in this mechanism could be Snf1p, which is a protein that participates in the nutritional response including glucose metabolism. Thus, this work aimed to recognize the role of the SNF1 gene on the glycolytic flux and mitochondrial respiration through the glucose concentration variation to gain insights about its relationship with the Crabtree effect. Herein, we found that SNF1 deletion in Saccharomyces cerevisiae cells grown at 1% glucose, decreased glycolytic flux, increased NAD(P)H concentration, enhanced HXK2 gene transcription, and decreased mitochondrial respiration. Meanwhile, the same deletion increased the mitochondrial respiration of cells grown at 10% glucose. Altogether, these findings indicate that SNF1 is important to respond to glucose concentration variation and is involved in the switch between mitochondrial respiration and fermentation.
Assuntos
Glucose/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentação , Glucose/análise , Glicólise , Hexoquinase/genética , NAD/metabolismo , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Transcrição GênicaRESUMO
Nutritional homeostasis is fundamental for alcoholic fermentation in Saccharomyces cerevisiae. Carbon and nitrogen have been related to this metabolic process; nevertheless, little is known about their interactions with the media and the energetic metabolism. Rim15p kinase is a point of convergence among different nutrient-activated signaling pathways; this makes it a target to investigate the relationship between nutritional status and energetic metabolism. To improve the current knowledge of nutrient interactions and their association with RIM15, we validated the doubling time as an indicator of growth phenotype, confirming that this kinetic parameter can be related to the cellular bioenergetic status. This endorses the usefulness of a threshold in doubling time values as an indicator of fermentative (≤ 6.5 h) and respiratory growth (≥ 13.2 h). Using the doubling time as response variable, we find that (i) two second-order interactions between type and concentration of carbon and nitrogen sources significantly affected the growth phenotype of S. cerevisiae; (ii) these metabolic interactions changed when RIM15 was deleted, suggesting a dependence on this gene; (iii) high concentration of ammonium (5% w/v) is toxic for S. cerevisiae cells; (iv) proline prompted fermentative growth phenotype regardless presence or absence of RIM15; (v) RIM15 deletion reverted ammonium toxicity when cells were grown in glucose (10% w/v); and (vi) RIM15 deletion improves fermentative metabolism probably by a partial inhibition of the respiration capacity. This study reveals the existence of synergic and diverse roles of carbon and nitrogen sources that are affected by RIM15, influencing the fermentative and respiratory growth of S. cerevisiae.
Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fermentação , Glucose/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
Nanoemulsions are feasible delivery systems of lipophilic compounds, showing potential as edible coatings with enhanced functional properties. The aim of this work was to study the effect of emulsifier type (stearic acid (SA), Tween 80 (T80) or Tween 80/Span 60 (T80/S60)) and emulsification process (homogenization, ultrasound or microfluidization) on nanoemulsion formation based on oxidized corn starch, beeswax (BW) and natural antimicrobials (lauric arginate and natamycin). The response variables were physicochemical properties, rheological behavior, wettability and antimicrobial activity of BW-starch nanoemulsions (BW-SN). The BW-SN emulsified using T80 and microfluidized showed the lowest droplet size (77.6 ± 6.2 nm), a polydispersion index of 0.4 ± 0.0 and whiteness index (WI) of 31.8 ± 0.8. This BW-SN exhibited a more negative ζ-potential: -36 ± 4 mV, and Newtonian flow behavior, indicating great stability. BW-SN antimicrobial activity was not affected by microfluidization nor the presence of T80, showing inhibition of the deteriorative fungi R. stolonifer, C. gloeosporioides and B. cinerea, and the pathogenic bacterium S. Saintpaul. In addition, regardless of emulsifier type and emulsification process, BW-SN applied on the tomato surface exhibited low contact angles (38.5° to 48.6°), resulting in efficient wettability (-7.0 mN/m to -8.9 mN/m). These nanoemulsions may be useful to produce edible coatings to preserve fresh-produce quality and safety.
Assuntos
Anti-Infecciosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanocompostos/química , Ceras/química , Anti-Infecciosos/química , Emulsões/química , Emulsões/uso terapêutico , Hexoses/química , Hexoses/uso terapêutico , Humanos , Nanocompostos/uso terapêutico , Polissorbatos/química , Polissorbatos/uso terapêutico , Amido/química , Amido/uso terapêutico , Ácidos Esteáricos/química , Ácidos Esteáricos/uso terapêuticoRESUMO
Edible films (EFs) have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan-zein mixture with three different essential oils (EOs) added: anise, orange, and cinnamon, and to characterize them to establish the relationship between their structural and physical properties. The addition of an EO into an EF significantly affected (p < 0.05) the a* (redness/greenness) and b* (yellowness/blueness) values of the film surface. The EFs presented a refractive index between 1.35 and 1.55, and thus are classified as transparent. The physical properties of EFs with an added EO were improved, and films that incorporated the anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h-1 m-2 kPa-1) and high hardness (104.3 ± 3.22 MPa). EFs with an added EO were able to inhibit the growth of Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films' structural changes were the result of chemical interactions among amino acid side chains from zein, glucosamine from chitosan, and cinnamaldehyde, anethole, or limonene from the EOs as detected by a Raman analysis. The incorporation of an EO in the EFs' formulation could represent an alternative use as coatings to enhance the shelf life of food products.
Assuntos
Antifúngicos/química , Quitosana/química , Embalagem de Alimentos , Óleos Voláteis/química , Zeína/química , Acroleína/análogos & derivados , Acroleína/química , Derivados de Alilbenzenos , Anisóis/química , Cicloexenos/química , Limoneno , Penicillium/efeitos dos fármacos , Polímeros/farmacologia , Refratometria , Rhizopus/efeitos dos fármacos , Propriedades de Superfície , Terpenos/químicaRESUMO
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano.
Assuntos
Antibacterianos/química , Cápsulas/química , Lippia/química , Óleos Voláteis/química , Origanum/química , Antibacterianos/farmacologia , Monoterpenos Bicíclicos , Brochothrix/efeitos dos fármacos , Monoterpenos Cicloexânicos , Cimenos , Lactobacillus plantarum/efeitos dos fármacos , Micrococcus luteus/efeitos dos fármacos , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Pseudomonas fragi/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Amido/química , Timol/análise , Timol/farmacologiaRESUMO
Quercetin (Q) dietary supplements exhibit poor oral bioavailability because of degradation throughout gastrointestinal digestion (GD), which may be overcome using mesoporous silica particles (MSPs) as an oral delivery system (ODS). This study aimed to elucidate the effect of the functionalization of MSPs with amine-(A-MSP), carboxyl-(C-MSP), or thiol-(T-MSP) groups on their efficiency as a quercetin ODS (QODS). The type and degree of functionalization (DF) were used as factors in an experimental design. The Q-loaded F-MSP (F-MSP/Q) was characterized by gas physisorption analysis, loading capacity (LC), and dynamic light scattering and kinetics of Q release at gastric and intestinal pHs. Antioxidant capacity and Q concentration of media containing F-MSP/Q were evaluated after simulated GD. A-MSP showed the highest LC (19.79 ± 2.42%). C-MSP showed the lowest particle size at pH 1.5 or 7.4 (≈200 nm). T-MSP exhibited the maximum Q release at pH 7.4 (11.43%). High DF of A-MSP increased Q retention, regardless of pH. A-MSP preserved antioxidant capacity of Q-released gastric media (58.95 ± 3.34%). Nonetheless, MSP and F-MSP did not protect antioxidant properties of Q released in intestinal conditions. C-MSP and T-MSP showed essential features for cellular uptake and Q release within cells that need to be assessed.
RESUMO
Cancer is a leading cause of death worldwide, reporting nearly 10 million deaths in 2020. One of the hallmarks of cancer cells is their capability to evade growth suppressors and sustain proliferative signaling resulting in uncontrolled growth. The AMPK pathway, a catabolic via to economize ATP, has been associated with cancer. AMPK activation is related to cancer progression in advanced stages, while its activation by metformin or phenformin is associated with cancer chemoprevention. Thus, the role of the AMPK pathway in cancer growth modulation is not clear. Saccharomyces cerevisiae might be a useful model to elucidate AMPK participation in growth regulation since it shares a highly conserved AMPK pathway. Therefore, this work is aimed at evaluating the role of the AMPK pathway on S. cerevisiae growth under different nutritional conditions. Herein, we provide evidence that the SNF1 gene is necessary to maintain S. cerevisiae growth with glucose as a sole carbon source at every concentration tested. Resveratrol supplementation inhibited the exponential growth of snf1∆ strain at low glucose levels and decreased it at high glucose levels. SNF1 gene deletion impaired exponential growth in a carbohydrate concentration-dependent manner independently of nitrogen source or concentration. Interestingly, deletion of genes encoding for upstream kinases (SAK1, ELM1, and TOS3) also had a glucose dose-dependent effect upon exponential growth. Furthermore, gene deletion of regulatory subunits of the AMPK complex impacted exponential growth in a glucose-dependent manner. Altogether, these results suggest that the SNF1 pathway affects the exponential growth of S. cerevisiae in a glucose-dependent manner.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais/fisiologia , Glucose/metabolismo , Proteínas Quinases/genéticaRESUMO
Plant-derived essential oils (EOs) represent a green alternative to conventional antimicrobial agents in food preservation. Due to their volatility and instability, their application is dependent on the development of efficient encapsulation strategies allowing their protection and release control. Encapsulation in Polyhydroxyalkanoate (PHA)-based nanoparticles (NPs) addresses this challenge, providing a biodegradable and biobased material whose delivery properties can be tuned by varying polymer composition. In this work, EO from Mexican oregano was efficiently encapsulated in Polyhydroxybutyrate (PHB) and Poly-3-hydroxybutyrate-co-hydroxyhexanoate (PHB-HHx)-based NPs by solvent evaporation technique achieving high encapsulation efficiency, (>60%) and loading capacity, (about 50%). The obtained NPs displayed a regular distribution with a size range of 150-210 nm. In vitro release studies in food simulant media were fitted with the Korsmeyer-Peppas model, indicating diffusion as the main factor controlling the release. The cumulative release was affected by the polymer composition, possibly related to the more amorphous nature of the copolymer, as confirmed by WAXS and DSC analyses. Both the EO-loaded nanosystems displayed antimicrobial activity against Micrococcus luteus, with PHB-HHx-based NPs being even more effective than the pure EO. The results open the way to the effective exploitation of the developed nanosystems in active packaging.
RESUMO
Biofilms on food-contact surfaces can lead to recurrent contamination. This work aimed to study the biofilm formation process on stainless steel plates used in the dairy industry: 304 surface finish 2B and electropolished; and the effect of a cleaning and disinfection process using alkaline (AEW) and neutral (NEW) electrolyzed water. Milk fouling during heat processing can lead to type A or B deposits, which were analyzed for composition, surface energy, thickness, and roughness, while the role of raw milk microbiota on biofilm development was investigated. Bacteria, yeasts, and lactic acid bacteria were detected using EUB-338, PF2, and Str-493 probes, respectively, whereas Lis-637 probe detected Listeria sp. The genetic complexity and diversity of biofilms varied according to biofilm maturation day, as evaluated by 16S rRNA gene sequence, denaturing gradient gel electrophoresis, and fluorescence in situ hybridization microscopy. From analysis of the experimental designs, a cleaning stage of 50 mg/L NaOH of AEW at 30 °C for 10 min, followed by disinfection using 50 mg/L total available chlorine of NEW at 20 °C for 5 min is a sustainable alternative process to prevent biofilm formation. Fluorescence microscopy was used to visualize the effectiveness of this process.
RESUMO
Nanocrystalline cellulose (NC) and a lignin-containing fraction (LF) were obtained from egagropili, the so called sea balls produced from rhizome and stem fragments of Posidonia oceanica that accumulate in large amounts along the coastal beaches in the form of tightly packed and dry materials of various dimensions. Both egagropili fractions have been shown to be able to improve the physicochemical properties of biodegradable films prepared from protein concentrates derived from hemp oilseed cakes. These materials, manufactured with a biodegradable industrial by-product and grafted with equally biodegradable waste-derived additives, exhibited an acceptable resistance with a still high flexibility, as well as they showed an effective barrier activity against water vapor and gases (O2 and CO2). Furthermore, both NC and LF decreased film moisture content, swelling ability and solubility, thus indicating that both additives were able to improve water resistance of the hydrocolloid films. The exploitation of egagropili, actually considered only an undesirable waste to be disposed, as a renewable source of reinforcing agents to blend with different kinds of polymers is suggested.
RESUMO
Food packaging faces the negative impact of synthetic materials on the environment, and edible coatings offer one alternative from filmogenic suspensions (FS). In this work, an active edible FS based on chitosan (C) and quinoa protein (QP) cross-linked with transglutaminase was produced. Thyme (T) and rosemary (R) essential oils (EOs) were incorporated as antimicrobial agents. Particle size, Z potential, and rheological parameters were evaluated. The antimicrobial activity against Micrococcus luteus (NCIB 8166) and Salmonella sp. (Lignieres 1900) was monitored using atomic force microscopy and image analysis. Results indicate that EOs incorporation into C:QP suspensions did not affect the Z potential, ranging from -46.69 ± 3.19 mV to -46.21 ± 3.83 mV. However, the polydispersity index increased from 0.51 ± 0.07 to 0.80 ± 0.04 in suspensions with EO. The minimum inhibitory concentration of active suspensions against Salmonella sp. was 0.5% (v/v) for thyme and 1% (v/v) for rosemary. Entropy and fractal dimension of the images were used to confirm the antimicrobial effect of EOs, which modified the surface roughness.
RESUMO
Saccharomyces cerevisiae cells in the exponential phase sustain their growth by producing ATP through fermentation and/or mitochondrial respiration. The fermentable carbon concentration mainly governs how the yeast cells generate ATP; thus, the variation in fermentable carbohydrate levels drives the energetic metabolism of S. cerevisiae. This paper describes a high-throughput method based on exponential yeast growth to estimate the effects of concentration changes and nature of the carbon source on respiratory and fermentative metabolism. The growth of S. cerevisiae is measured in a microplate or shaken conical flask by determining the optical density (OD) at 600 nm. Then, a growth curve is built by plotting OD versus time, which allows identification and selection of the exponential phase, and is fitted with the exponential growth equation to obtain kinetic parameters. Low specific growth rates with higher doubling times generally represent a respiratory growth. Conversely, higher specific growth rates with lower doubling times indicate fermentative growth. Threshold values of doubling time and specific growth rate are estimated using well-known respiratory or fermentative conditions, such as non-fermentable carbon sources or higher concentrations of fermentable sugars. This is obtained for each specific strain. Finally, the calculated kinetic parameters are compared with the threshold values to establish whether the yeast shows fermentative and/or respiratory growth. The advantage of this method is its relative simplicity for understanding the effects of a substance/compound on fermentative or respiratory metabolism. It is important to highlight that growth is an intricate and complex biological process; therefore, preliminary data from this method must be corroborated by the quantification of oxygen consumption and accumulation of fermentation byproducts. Thereby, this technique can be used as a preliminary screening of compounds/substances that may disturb or enhance fermentative or respiratory metabolism.
Assuntos
Técnicas de Cultura Celular por Lotes , Fermentação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Glucose/metabolismo , Cinética , Consumo de OxigênioRESUMO
Galactooligosaccharides (GOS) are prebiotics produced from lactose through an enzymatic reaction. Employing an immobilized enzyme may result in cost reductions; however, the changes in its kinetics due to immobilization has not been studied. This study experimentally determined the optimal reaction conditions for the production of GOS from lactose by ß-galactosidase (EC 3.2.1.23) from Kluyveromyces lactis covalently immobilized to a polysiloxane-polyvinyl alcohol (POS-PVA) polymer activated with glutaraldehyde (GA), and to study the transgalactosylation kinetics. Yield immobilization was 99 ± 1.1% with 78.5 ± 2.4% enzyme activity recovery. An experimental design 24 with 1 center point and 2 replicates was used. Factors were lactose [L], enzyme concentration [E], pH and temperature (T). Response variables were glucose and galactose as monosaccharides [G1], residual lactose [Lac]r and GOS as disaccharides [G2] and trisaccharides [G3]. Best conditions were pH 7.1, 40 °C, 270 gL-1 initial lactose concentration and 6 U mL-1 enzyme concentration, obtaining 25.46 ± 0.01 gL-1 yield of trisaccharides. Although below the HPLC-IR detection limit, tetrasaccharides were also identified after 115 min of reaction. The immobilization protocol was then optimized by diminishing total reactant volumes : support ratio, resulting in improved enzyme activity synthesizing 43.53 ± 0.02 gL-1 of trisaccharides and 13.79 ± 0.21 gL-1 of tetrasaccharides, and after four cycles remaining relative activity was 94%. A reaction mechanism was proposed through which a mathematical model was developed and rate constants were estimated, considering a pseudo steady-state hypothesis for two concomitant reactions, and from this simplified analysis, the reaction yield could eventually be improved. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1568-1578, 2017.
Assuntos
Enzimas Imobilizadas/química , Galactose/química , Oligossacarídeos/química , beta-Galactosidase/química , Galactose/biossíntese , Glucose , Cinética , Kluyveromyces/enzimologia , Lactose/química , Oligossacarídeos/biossíntese , TemperaturaRESUMO
Fresh meat is a highly perishable food. This work aimed to evaluate the influence of Mexican oregano (Lippia graveolens Kunth) incorporated into active coatings (ACs) spread on fresh pork meat as free (FEO), nanoemulsified (NEO), and microencapsulated (MEO) essential oil (EO), on its microbiological, physicochemical and sensory properties during 15 d at 4 ± 1 °C. Thymol and γ-terpinene were identified in the EO. In vitro effect of 2.85 mg EO/cm2 was tested against Brochothrix thermosphacta, Micrococcus luteus, Lactobacillus plantarum, Pseudomonas fragi, and Salmonella Infantis. FEO antioxidant capacity (DPPH assay) was significantly higher than that of thymol, NEO and MEO (93.53%, 89.92%, 77.79%, and 78.50% inhibition, respectively), and similar to BHA (96.03%) and gallic acid (95.57%). FEO, NEO, and MEO ACs on meat caused growth inhibition of lactic acid bacteria (5 log population reduction) and Pseudomonas spp. (4 log reduction), whereas ≤1.5 log population reduction was observed for B. thermosphacta and Salmonella Infantis. Meat microbiota was more efficiently controlled by MEO than by FEO or NEO. ACs delayed lipid and oxymyoglobin oxidation of fresh pork meat. After 15 d of cold storage meat added with EO coatings was desirable for panelists, whereas untreated (UT) samples were undesirable. Active coatings are a significant alternative method for fresh meat preservation.