Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(47): 29618-29628, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33154160

RESUMO

Proteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and ß-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to ß-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization.


Assuntos
Insulina/metabolismo , Substituição de Aminoácidos/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Diabetes Mellitus/metabolismo , Dissulfetos/metabolismo , Redes Reguladoras de Genes/fisiologia , Células HEK293 , Humanos , Células Secretoras de Insulina/metabolismo , Células MCF-7 , Proinsulina/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Ratos , Receptor de Insulina/metabolismo , Relação Estrutura-Atividade
2.
Diabetologia ; 64(5): 1016-1029, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710398

RESUMO

Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.


Assuntos
Sistemas de Infusão de Insulina , Insulina/análogos & derivados , Insulina/administração & dosagem , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/tendências , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Glucose/farmacologia , Humanos , Sistemas de Infusão de Insulina/tendências , Invenções/tendências , Pâncreas Artificial/tendências
3.
J Biol Chem ; 295(10): 3080-3098, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005662

RESUMO

Globular protein sequences encode not only functional structures (the native state) but also protein foldability, i.e. a conformational search that is both efficient and robustly minimizes misfolding. Studies of mutations associated with toxic misfolding have yielded insights into molecular determinants of protein foldability. Of particular interest are residues that are conserved yet dispensable in the native state. Here, we exploited the mutant proinsulin syndrome (a major cause of permanent neonatal-onset diabetes mellitus) to investigate whether toxic misfolding poses an evolutionary constraint. Our experiments focused on an invariant aromatic motif (PheB24-PheB25-TyrB26) with complementary roles in native self-assembly and receptor binding. A novel class of mutations provided evidence that insulin can bind to the insulin receptor (IR) in two different modes, distinguished by a "register shift" in this motif, as visualized by molecular dynamics (MD) simulations. Register-shift variants are active but defective in cellular foldability and exquisitely susceptible to fibrillation in vitro Indeed, expression of the corresponding proinsulin variant induced endoplasmic reticulum stress, a general feature of the mutant proinsulin syndrome. Although not present among vertebrate insulin and insulin-like sequences, a prototypical variant ([GlyB24]insulin) was as potent as WT insulin in a rat model of diabetes. Although in MD simulations the shifted register of receptor engagement is compatible with the structure and allosteric reorganization of the IR-signaling complex, our results suggest that this binding mode is associated with toxic misfolding and so is disallowed in evolution. The implicit threat of proteotoxicity limits sequence variation among vertebrate insulins and insulin-like growth factors.


Assuntos
Evolução Molecular , Insulina/análogos & derivados , Motivos de Aminoácidos , Animais , Sítios de Ligação , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Células HEK293 , Humanos , Insulina/metabolismo , Insulina/uso terapêutico , Simulação de Dinâmica Molecular , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Ratos , Receptor de Insulina/metabolismo , Relação Estrutura-Atividade , Termodinâmica
4.
Chemistry ; 26(21): 4695-4700, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31958351

RESUMO

Long-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U). Relative to wild type (WT), Se-insulin[C7UA , C7UB ] was reported to be protected from proteolysis by insulin-degrading enzyme (IDE), predicting prolonged activity. Because of this strategy's novelty and potential clinical importance, we sought to validate these findings and test their therapeutic utility in an animal model of diabetes mellitus. Surprisingly, the analogue did not exhibit enhanced stability, and its susceptibility to cleavage by either IDE or a canonical serine protease (glutamyl endopeptidase Glu-C) was similar to WT. Moreover, the analogue's pharmacodynamic profile in rats was not prolonged relative to a rapid-acting clinical analogue (insulin lispro). Although [C7UA , C7UB ] does not confer protracted action, nonetheless its comparison to internal diselenide bridges promises to provide broad biophysical insight.

5.
J Biol Chem ; 293(28): 10895-10910, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29880646

RESUMO

Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly.


Assuntos
Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Diabetes Mellitus Experimental/prevenção & controle , Insulina/química , Insulina/metabolismo , Receptor de Insulina/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Masculino , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos , Ratos Endogâmicos Lew
6.
J Biol Chem ; 293(1): 47-68, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29114035

RESUMO

Thermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling in vivo, of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin. Here, we describe the structure, function, and stability of such an analog, a 57-residue single-chain insulin (SCI) with multiple acidic substitutions. Cell-based studies revealed native-like signaling properties with negligible mitogenic activity. Its crystal structure, determined as a novel zinc-free hexamer at 2.8 Å, revealed a native insulin fold with incomplete or absent electron density in the C domain; complementary NMR studies are described in the accompanying article. The stability of the analog (ΔGU 5.0(±0.1) kcal/mol at 25 °C) was greater than that of WT insulin (3.3(±0.1) kcal/mol). On gentle agitation, the SCI retained full activity for >140 days at 45 °C and >48 h at 75 °C. These findings indicate that marked resistance to thermal inactivation in vitro is compatible with native duration of activity in vivo Further, whereas WT insulin forms large and heterogeneous aggregates above the standard 0.6 mm pharmaceutical strength, perturbing the pharmacokinetic properties of concentrated formulations, dynamic light scattering, and size-exclusion chromatography revealed only limited SCI self-assembly and aggregation in the concentration range 1-7 mm Such a combination of favorable biophysical and biological properties suggests that SCIs could provide a global therapeutic platform without a cold chain.


Assuntos
Hipoglicemiantes/química , Insulina/análogos & derivados , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Humanos , Hipoglicemiantes/metabolismo , Insulina/genética , Insulina/metabolismo , Modelos Moleculares , Agregados Proteicos , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Solubilidade , Suínos , Temperatura
7.
Chemistry ; 25(36): 8513-8521, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31012517

RESUMO

Insulin analogues, mainstays in the modern treatment of diabetes mellitus, exemplify the utility of protein engineering in molecular pharmacology. Whereas chemical syntheses of the individual A and B chains were accomplished in the early 1960s, their combination to form native insulin remains inefficient because of competing disulfide pairing and aggregation. To overcome these limitations, we envisioned an alternative approach: pairwise substitution of cysteine residues with selenocysteine (Sec, U). To this end, CysA6 and CysA11 (which form the internal intrachain A6-A11 disulfide bridge) were each replaced with Sec. The A chain[C6U, C11U] variant was prepared by solid-phase peptide synthesis; while sulfitolysis of biosynthetic human insulin provided wild-type B chain-di-S-sulfonate. The presence of selenium atoms at these sites markedly enhanced the rate and fidelity of chain combination, thus solving a long-standing challenge in chemical insulin synthesis. The affinity of the Se-insulin analogue for the lectin-purified insulin receptor was indistinguishable from that of WT-insulin. Remarkably, the thermodynamic stability of the analogue at 25 °C, as inferred from guanidine denaturation studies, was augmented (ΔΔGu ≈0.8 kcal mol-1 ). In accordance with such enhanced stability, reductive unfolding of the Se-insulin analogue and resistance to enzymatic cleavage by Glu-C protease occurred four times more slowly than that of WT-insulin. 2D-NMR and X-ray crystallographic studies demonstrated a native-like three-dimensional structure in which the diselenide bridge was accommodated in the hydrophobic core without steric clash.


Assuntos
Dissulfetos/química , Insulina/química , Selênio/química , Cristalografia por Raios X , Cisteína/química , Humanos , Insulina/genética , Insulina/metabolismo , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Selenocisteína/química , Termodinâmica
8.
Diabetes Obes Metab ; 20 Suppl 2: 28-50, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30230185

RESUMO

Insulin synthesis in pancreatic ß-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic ß-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Precursores de Proteínas/biossíntese , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Humanos , Insulina/química , Camundongos , Mutação/genética , Proinsulina/biossíntese , Proinsulina/química , Proinsulina/genética , Dobramento de Proteína , Precursores de Proteínas/química , Sistemas de Translocação de Proteínas/metabolismo
9.
J Biol Chem ; 291(25): 12978-90, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129279

RESUMO

Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of Tyr(B26), a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26. Surprisingly, non-aromatic polar or charged side chains (such as Glu, Ser, or ornithine (Orn)) conferred high activity, whereas the weakest-binding analogs contained Val, Ile, and Leu substitutions. Modeling of variant complexes suggested that the B26 side chains pack within a shallow depression at the solvent-exposed periphery of the interface. This interface would disfavor large aliphatic side chains. The analogs with highest activity exhibited reduced thermodynamic stability and heightened susceptibility to fibrillation. Perturbed self-assembly was also demonstrated in studies of the charged variants (Orn and Glu); indeed, the Glu(B26) analog exhibited aberrant aggregation in either the presence or absence of zinc ions. Thus, although Tyr(B26) is part of insulin's receptor-binding surface, our results suggest that its conservation has been enjoined by the aromatic ring's contributions to native stability and self-assembly. We envisage that such classical structural relationships reflect the implicit threat of toxic misfolding (rather than hormonal function at the receptor level) as a general evolutionary determinant of extant protein sequences.


Assuntos
Insulina/química , Sequência de Aminoácidos , Sequência Conservada , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Receptor de Insulina/química , Relação Estrutura-Atividade , Tirosina/química
10.
Chemistry ; 23(7): 1709-1716, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27905149

RESUMO

We have systematically explored three approaches based on 9-fluorenylmethoxycarbonyl (Fmoc) chemistry solid phase peptide synthesis (SPPS) for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the "hybrid method", in which maximally protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[O-ß-(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High-resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies could yield an efficient total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS.


Assuntos
Hipoglicemiantes/síntese química , Insulina Lispro/síntese química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Dissulfetos/química , Fluorenos/química , Hipoglicemiantes/química , Insulina Lispro/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Técnicas de Síntese em Fase Sólida
11.
Diabetes ; 69(5): 954-964, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139596

RESUMO

Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in ß-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production.


Assuntos
Insulina/síntese química , Insulina/metabolismo , Proinsulina/química , Proinsulina/metabolismo , Animais , Linhagem Celular , Humanos , Insulina/química , Insulina/genética , Ilhotas Pancreáticas , Camundongos , Modelos Moleculares , Mutação , Proinsulina/genética , Conformação Proteica
12.
Curr Opin Endocrinol Diabetes Obes ; 24(4): 267-278, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28509691

RESUMO

PURPOSE OF REVIEW: The complexity of modern insulin-based therapy for type I and type II diabetes mellitus and the risks associated with excursions in blood-glucose concentration (hyperglycemia and hypoglycemia) have motivated the development of 'smart insulin' technologies (glucose-responsive insulin, GRI). Such analogs or delivery systems are entities that provide insulin activity proportional to the glycemic state of the patient without external monitoring by the patient or healthcare provider. The present review describes the relevant historical background to modern GRI technologies and highlights three distinct approaches: coupling of continuous glucose monitoring (CGM) to deliver devices (algorithm-based 'closed-loop' systems), glucose-responsive polymer encapsulation of insulin, and molecular modification of insulin itself. RECENT FINDINGS: Recent advances in GRI research utilizing each of the three approaches are illustrated; these include newly developed algorithms for CGM-based insulin delivery systems, glucose-sensitive modifications of existing clinical analogs, newly developed hypoxia-sensitive polymer matrices, and polymer-encapsulated, stem-cell-derived pancreatic ß cells. SUMMARY: Although GRI technologies have yet to be perfected, the recent advances across several scientific disciplines that are described in this review have provided a path towards their clinical implementation.


Assuntos
Glicemia/análise , Glicemia/fisiologia , Hipoglicemiantes/administração & dosagem , Bombas de Infusão Implantáveis , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Pâncreas Artificial , Algoritmos , Automonitorização da Glicemia/instrumentação , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA