Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 100(1): 203-217, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34714550

RESUMO

Mature albacore tuna (Thunnus alalunga) are expected to have high energy requirements at the time of breeding. However, there are no descriptions of the diet of albacore in the Mediterranean Sea that can help us to understand if such requirements can be obtained from feeding during reproduction. In this study, we analysed the stomach contents of reproductively active albacore captured from 2010 to 2015 in the oligotrophic waters of the western Mediterranean Sea, one of their main spawning grounds. Estimates of stomach fullness revealed intense feeding activity, and prey composition indicated important consumption of mesopelagic fish, including barracudinas, myctophids and small pelagic crustaceans. Plastic debris occurred in 25%-53% of the stomachs sampled across all years. Prey composition was not different between males and females. However, females fed at higher rates and had higher hepatosomatic index values than males, suggesting that increased feeding could contribute to meet their higher energy demand associated with offspring production. We observed a diet shift from small crustaceans to fish prey along fish size. During the spawning period, albacore showed a specialist feeding behaviour by preying on aggregations of vertically migrating myctophids and small crustaceans, probably when they were near the surface. This study provides information and biological data to support ecosystem modelling and to increase the understanding of albacore ecology.


Assuntos
Ecossistema , Atum , Animais , Dieta , Comportamento Alimentar , Feminino , Masculino , Mar Mediterrâneo
2.
J Fish Biol ; 97(5): 1296-1305, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32710475

RESUMO

Atlantic bluefin tuna is an iconic scombrid species with a high commercial and ecological value. Despite their importance, many physiological aspects, especially during the larval stages, are still unknown. Metabolic rates are one of the understudied aspects in scombrid larvae, likely due to challenges associated to larval handling before and during respirometry trials. Gaining reliable estimates of metabolic rates is essential to understand how larvae balance their high growth needs and activity and other physiological functions, which can be very useful for fisheries ecology and aquaculture. This is the first study to (a) estimate the relationship between routine metabolic rate (RMR) and larval dry weight (DW) (mass scaling exponent) at a constant temperature of 26°C, (b) measure the RMR under light and darkness and (c) test whether the interindividual differences in the RMR are related to larval nutritional status (RNA/DNA and DNA/DW). The RMR scaled nearly isometrically with body size (b = 0.99, 0.60-31.56 mg DW) in contrast to the allometric relationship observed in most fish larvae (average b = 0.87). The results show no significant differences in larval RMR under light and darkness, suggesting similar larval activity levels in both conditions. The size explained most of the variability in RMR (97%), and nutritional condition was unrelated to the interindividual differences in routine metabolism. This is the first study to report the metabolic rates of Atlantic bluefin tuna larvae and discuss the challenges of performing bioenergetic studies with early life stages of scombrids.


Assuntos
Metabolismo Energético , Atum/metabolismo , Animais , Oceano Atlântico , Pesqueiros , Estado Nutricional , Temperatura
3.
Ecol Appl ; 29(5): e01913, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31144784

RESUMO

Marine resources stewardships are progressively becoming more receptive to an effective incorporation of both ecosystem and environmental complexities into the analytical frameworks of fisheries assessment. Understanding and predicting marine fish production for spatially and demographically complex populations in changing environmental conditions is however still a difficult task. Indeed, fisheries assessment is mostly based on deterministic models that lack realistic parameterizations of the intricate biological and physical processes shaping recruitment, a cornerstone in population dynamics. We use here a large metapopulation of a harvested fish, the European hake (Merluccius merluccius), managed across transnational boundaries in the northwestern Mediterranean, to model fish recruitment dynamics in terms of physics-dependent drivers related to dispersal and survival. The connectivity among nearby subpopulations is evaluated by simulating multi-annual Lagrangian indices of larval retention, imports, and self-recruitment. Along with a proxy of the regional hydroclimate influencing early life stages survival, we then statistically determine the relative contribution of dispersal and hydroclimate for recruitment across contiguous management units. We show that inter-annual variability of recruitment is well reproduced by hydroclimatic influences and synthetic connectivity estimates. Self-recruitment (i.e., the ratio of retained locally produced larvae to the total number of incoming larvae) is the most powerful metric as it integrates the roles of retained local recruits and immigrants from surrounding subpopulations and is able to capture circulation patterns affecting recruitment at the scale of management units. We also reveal that the climatic impact on recruitment is spatially structured at regional scale due to contrasting biophysical processes not related to dispersal. Self-recruitment calculated for each management unit explains between 19% and 32.9% of the variance of recruitment variability, that is much larger than the one explained by spawning stock biomass alone, supporting an increase of consideration of connectivity processes into stocks assessment. By acknowledging the structural and ecological complexity of marine populations, this study provides the scientific basis to link spatial management and temporal assessment within large marine metapopulations. Our results suggest that fisheries management could be improved by combining information of physical oceanography (from observing systems and operational models), opening new opportunities such as the development of short-term projections and dynamic spatial management.


Assuntos
Ecossistema , Peixes , Animais , Pesqueiros , Larva , Oceanos e Mares , Dinâmica Populacional
4.
Ecology ; 103(1): e03568, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674266

RESUMO

To predict shifts in phenology and distribution of organisms we need to understand how survival through early life stages depends on environmental conditions. Here, we present a mechanistic model of development, feeding and bioenergetics of early life stages in bluefin tuna and predict the optimal time of the year for them to be born. We find that the availability of prey, particularly nauplii, is sufficient for fast growth in tuna larvae while temperature is moderate during midsummer, but not when temperatures increase later in summer. High temperatures benefit egg and yolk-sac stages, but the metabolic needs of feeding larvae are hard to sustain during the warmest periods. Heatwaves, such as the one in 2003, increase larval survival potential, but shorten the viable part of the season for the larvae. Atlantic bluefin tuna is a large, highly migratory marine top predator that spawns while temperatures are rising, but before the heat leads to a metabolic meltdown in larvae. This means that food resources modulate how temperature change shifts optimal phenology.


Assuntos
Metabolismo Energético , Atum , Animais , Oceano Atlântico , Larva , Estações do Ano , Temperatura
5.
Sci Rep ; 12(1): 2064, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136122

RESUMO

Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3-3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Archaea/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Microbiota/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Archaea/classificação , Archaea/genética , Bromodesoxiuridina/química , Meio Ambiente , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Mar Mediterrâneo , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
6.
J Plankton Res ; 44(5): 782-798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045951

RESUMO

Atlantic bluefin tuna (ABT) (Thunnus thynnus) travel long distances to spawn in oligotrophic regions of the Gulf of Mexico (GoM) which suggests these regions offer some unique benefit to offspring survival. To better understand how larval survival varies within the GoM a spatially explicit, Lagrangian, individual-based model was developed that simulates dispersal and mortality of ABT early life stages within realistic predator and prey fields during the spawning periods from 1993 to 2012. The model estimates that starvation is the largest cumulative source of mortality associated with an early critical period. However, elevated predation on older larvae is identified as the main factor limiting survival to late postflexion. As a result, first-feeding larvae have higher survival on the shelf where food is abundant, whereas older larvae have higher survival in the open ocean with fewer predators, making the shelf break an optimal spawning area. The modeling framework developed in this study explicitly simulates both physical and biological factors that impact larval survival and hence could be used to support ecosystem based management efforts for ABT under current and future climate conditions.

7.
Sci Rep ; 11(1): 17859, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504142

RESUMO

Dark ocean microbial dynamics are fundamental to understand ecosystem metabolism and ocean biogeochemical processes. Yet, the ecological response of deep ocean communities to environmental perturbations remains largely unknown. Temporal and spatial dynamics of the meso- and bathypelagic prokaryotic communities were assessed throughout a 2-year seasonal sampling across the western Mediterranean Sea. A common pattern of prokaryotic communities' depth stratification was observed across the different regions and throughout the seasons. However, sporadic and drastic alterations of the community composition and diversity occurred either at specific water masses or throughout the aphotic zone and at a basin scale. Environmental changes resulted in a major increase in the abundance of rare or low abundant phylotypes and a profound change of the community composition. Our study evidences the temporal dynamism of dark ocean prokaryotic communities, exhibiting long periods of stability but also drastic changes, with implications in community metabolism and carbon fluxes. Taken together, the results highlight the importance of monitoring the temporal patterns of dark ocean prokaryotic communities.

8.
Front Microbiol ; 11: 1749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849378

RESUMO

Surface microbial communities are exposed to seasonally changing environmental conditions, resulting in recurring patterns of community composition. However, knowledge on temporal dynamics of open ocean microbial communities remains scarce. Seasonal patterns and associations of taxa and oligotypes from surface and chlorophyll maximum layers in the western Mediterranean Sea were studied over a 2-year period. Summer stratification versus winter mixing governed not only the prokaryotic community composition and diversity but also the temporal dynamics and co-occurrence association networks of oligotypes. Flavobacteriales, Rhodobacterales, SAR11, SAR86, and Synechococcales oligotypes exhibited contrasting seasonal dynamics, and consequently, specific microbial assemblages and potential inter-oligotype connections characterized the different seasons. In addition, oligotypes composition and dynamics differed between surface and deep chlorophyll maximum (DCM) prokaryotic communities, indicating depth-related environmental gradients as a major factor affecting association networks between closely related taxa. Taken together, the seasonal and depth specialization of oligotypes suggest temporal dynamics of community composition and metabolism, influencing ecosystem function and global biogeochemical cycles. Moreover, our results indicate highly specific associations between microbes, pointing to keystone ecotypes and fine-tuning of the microbes realized niche.

9.
Front Microbiol ; 10: 1698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396196

RESUMO

The phytoplankton community composition, structure, and biomass were investigated under stratified and oligotrophic conditions during summer for three consecutive years in the Mediterranean Sea. Our results reveal that the phytoplankton community structure was strongly influenced by vertical stratification. The thermocline separated two different phytoplankton communities in the two layers of the euphotic zone, characterized by different nutrient and light availability. Picoplankton dominated in terms of abundance and biomass at all the stations sampled and throughout the photic zone. However, the structure of the picoplanktonic community changed with depth, with Synechococcus and heterotrophic prokaryotes dominating in surface waters down to the base of the thermocline, and Prochlorococcus and picoeukaryotes contributing relatively more to the community in the deep chlorophyll maximum (DCM). Light and nutrient availability also influenced the communities at the DCM layer. Prochlorococcus prevailed in deeper DCM waters characterized by lower light intensities and higher picophytoplankton abundance was related to lower nutrient concentrations at the DCM. Picoeukaryotes were the major phytoplankton contributors to carbon biomass at surface (up to 80%) and at DCM (more than 40%). Besides, contrarily to the other phytoplankton groups, picoeukaryotes cell size progressively decreased with depth. Our research shows that stratification is a major factor determining the phytoplankton community structure; and underlines the role that picoeukaryotes might play in the carbon flux through the marine food web, with implications for the community metabolism and carbon fate in the ecosystem.

10.
PLoS One ; 9(10): e109338, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347411

RESUMO

Seascape ecology is an emerging discipline focused on understanding how features of the marine habitat influence the spatial distribution of marine species. However, there is still a gap in the development of concepts and techniques for its application in the marine pelagic realm, where there are no clear boundaries delimitating habitats. Here we demonstrate that pelagic seascape metrics defined as a combination of hydrographic variables and their spatial gradients calculated at an appropriate spatial scale, improve our ability to model pelagic fish distribution. We apply the analysis to study the spawning locations of two tuna species: Atlantic bluefin and bullet tuna. These two species represent a gradient in life history strategies. Bluefin tuna has a large body size and is a long-distant migrant, while bullet tuna has a small body size and lives year-round in coastal waters within the Mediterranean Sea. The results show that the models performance incorporating the proposed seascape metrics increases significantly when compared with models that do not consider these metrics. This improvement is more important for Atlantic bluefin, whose spawning ecology is dependent on the local oceanographic scenario, than it is for bullet tuna, which is less influenced by the hydrographic conditions. Our study advances our understanding of how species perceive their habitat and confirms that the spatial scale at which the seascape metrics provide information is related to the spawning ecology and life history strategy of each species.


Assuntos
Ecossistema , Atum , Animais , Biodiversidade , Ilhas , Mar Mediterrâneo , Modelos Teóricos , Dinâmica Populacional , Salinidade , Água do Mar , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA