Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 204(2): 348-359, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31826941

RESUMO

Autoimmunity can result when cells fail to properly dispose of DNA. Mutations in the three-prime repair exonuclease 1 (TREX1) cause a spectrum of human autoimmune diseases resembling systemic lupus erythematosus. The cytosolic dsDNA sensor, cyclic GMP-AMP synthase (cGAS), and the stimulator of IFN genes (STING) are required for pathogenesis, but specific cells in which DNA sensing and subsequent type I IFN (IFN-I) production occur remain elusive. In this study, we demonstrate that TREX1 D18N catalytic deficiency causes dysregulated IFN-I signaling and autoimmunity in mice. Moreover, we show that bone marrow-derived cells drive this process. We identify both innate immune and, surprisingly, activated T cells as sources of pathological IFN-α production. These findings demonstrate that TREX1 enzymatic activity is crucial to prevent inappropriate DNA sensing and IFN-I production in immune cells, including normally low-level IFN-α-producing cells. These results expand our understanding of DNA sensing and innate immunity in T cells and may have relevance to the pathogenesis of human disease caused by TREX1 mutation.


Assuntos
Exodesoxirribonucleases/genética , Lúpus Eritematoso Sistêmico/genética , Fosfoproteínas/genética , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Autoimunidade , Células Cultivadas , DNA/imunologia , Modelos Animais de Doenças , Humanos , Imunidade Inata , Interferon-alfa/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/metabolismo
2.
Methods ; 99: 128-34, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26314281

RESUMO

Digestion and motility of luminal content through the gastrointestinal (GI) tract are achieved by cooperation between distinct cell types. Much of the 3 dimensional (3D) in vitro modeling used to study the GI physiology and disease focus solely on epithelial cells and not smooth muscle cells (SMCs). SMCs of the gut function either to propel and mix luminal contents (phasic; non-sphincteric) or to act as barriers to prevent the movement of luminal materials (tonic; sphincteric). Motility disorders including pyloric stenosis and chronic intestinal pseudoobstruction (CIPO) affect sphincteric and non-sphincteric SMCs, respectively. Bioengineering offers a useful tool to develop functional GI tissue mimics that possess similar characteristics to native tissue. The objective of this study was to bioengineer 3D human pyloric sphincter and small intestinal (SI) constructs in vitro that recapitulate the contractile phenotypes of sphincteric and non-sphincteric human GI SMCs. Bioengineered 3D human pylorus and circular SI SMC constructs were developed and displayed a contractile phenotype. Constructs composed of human pylorus SMCs displayed tonic SMC characteristics, including generation of basal tone, at higher levels than SI SMC constructs which is similar to what is seen in native tissue. Both constructs contracted in response to potassium chloride (KCl) and acetylcholine (ACh) and relaxed in response to vasoactive intestinal peptide (VIP). These studies provide the first bioengineered human pylorus constructs that maintain a sphincteric phenotype. These bioengineered constructs provide appropriate models to study motility disorders of the gut or replacement tissues for various GI organs.


Assuntos
Miócitos de Músculo Liso/fisiologia , Engenharia Tecidual , Células Cultivadas , Humanos , Intestino Delgado/citologia , Contração Muscular , Músculo Liso/citologia , Músculo Liso/fisiologia , Técnicas de Cultura de Órgãos , Piloro/citologia , Medicina Regenerativa
3.
Angiogenesis ; 17(3): 573-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24197832

RESUMO

Most deaths associated with breast cancer, the most common malignancy in women, are caused by metastasis. Tumor associated macrophages significantly contribute to breast cancer progression and development of metastasis through the promotion of angiogenesis which involves a central regulator of macrophage functions: nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Macrophages are activated by macrophage colony stimulating factor (MCSF) and chemokine (C-C motif) ligand 2 (CCL2) to secrete angiogenic factors including vascular endothelial growth factor (VEGF). The release of MCSF from tumor cells is mediated by ectodomain shedding through tumor necrosis factor alpha converting enzyme activation (TACE). Here we determined whether tumor cells TACE-shed MCSF promotes angiogenesis through activation of the NF-κB pathway in macrophages and the subsequent release of VEGF. These interactions were modeled in vitro using a panel of mammary cells mimicking the breast cancer progression from normal murine mammary gland cells to metastatic 4T1 cells along with J774 macrophages, all derived from BALB/c mice. TACE and MCSF expressions were higher in metastatic cells compared to epithelial cells (p < 0.05). Tumor conditioned medias activated the expression of VEGF by macrophages through stimulation of the NF-κB pathway and resulting macrophage secretions that promoted high levels of endothelial cell tubes. Furthermore, the combinations of CCL2, also highly expressed by tumor cells, and MCSF promoted pro-angiogenic macrophages. These results highlight the key role of tumor cell TACE-shed MCSF and secreted CCL2 in stimulating pro-angiogenic macrophages.


Assuntos
Proteínas ADAM/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Proteína ADAM17 , Animais , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Metástase Neoplásica , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Autoimmunity ; 51(7): 333-344, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30422000

RESUMO

Anaemia is commonly observed in chronic inflammatory conditions, including systemic lupus erythematosus (SLE), where ∼50% of patients display clinical signs of anaemia. Mutation at the aspartate residue 18 of the three prime repair exonuclease 1 (TREX1) gene causes a monogenic form of cutaneous lupus in humans and the genetically precise TREX1 D18N mice recapitulate a lupus-like disease. TREX1 degrades single- and double-stranded DNA (dsDNA), and the link between failed DNA degradation by nucleases, including nucleoside-diphosphate kinases (NM23H1/H2) and Deoxyribonuclease II (DNase II), and anaemia prompted our studies to investigate whether TREX1 dysfunction contributes to anaemia. Utilizing the TREX1 D18N mice we demonstrate that (1) TREX1 mutant mice develop normocytic normochromic anaemia and (2) TREX1 exonuclease participates in the degradation of DNA originating from erythroblast nuclei during definitive erythropoiesis. Gene expression, hematocrit, hemoglobin, immunohistochemistry (IHC) and flow cytometry were used to quantify dysfunctional erythropoiesis. An altered response to induced anaemia in the TREX1 D18N mice was determined through IHC, flow cytometry, and interferon-stimulated gene (ISG) expression analysis of the liver, spleen and erythroblastic islands (EBIs). IHC, flow cytometry, and ISG expression studies were performed in vitro to determine the role of TREX1 in the degradation of erythroblast DNA within EBIs. The TREX1 D18N mice exhibit altered erythropoiesis including a 20% reduction in hematocrit, 10-20 fold increased erythropoietic gene expression levels in the spleen and phenotypic signs of normocytic normochromic anaemia. Anaemia in TREX1 D18N mice is accompanied by increased erythropoietin (Epo), normal hepcidin levels and the TREX1 D18N mice display an inappropriate response to anaemic challenge. Enhanced ISG expression results from failed processing and subsequent sensing of undegraded erythroblast DNA in EBIs. TREX1 participates in the degradation of erythroblast DNA in the EBI and TREX1 D18N mice exhibit a normocytic normochromic anaemia.

5.
J Tissue Eng Regen Med ; 11(4): 1251-1261, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-25926098

RESUMO

The enteric nervous system (ENS) controls gastrointestinal (GI) functions, including motility and digestion, which are impaired in ENS disorders. Differentiation of enteric neurons is mediated by factors released by the gut mesenchyme, including smooth muscle cells (SMCs). SMC-derived factors involved in adult enteric neural progenitor cells (NPCs) differentiation remain elusive. Furthermore, physiologically relevant in vitro models to investigate the innervations of various regions of the gut, such as the pylorus and lower oesophageal sphincter (LES), are not available. Here, neural differentiation in bioengineered innervated circular constructs composed of SMCs isolated from the internal anal sphincter (IAS), pylorus, LES and colon of rabbits was investigated. Additionally, SMC-derived factors that induce neural differentiation were identified to optimize bioengineered construct innervations. Sphincteric and non-sphincteric bioengineered constructs aligned circumferentially and SMCs maintained contractile phenotypes. Sphincteric constructs generated spontaneous basal tones. Higher levels of excitatory and inhibitory motor neuron differentiation and secretion of bone morphogenic protein 2 (BMP2) were observed in bioengineered, innervated, sphincteric constructs compared to non-sphincteric constructs. The addition of BMP2 to non-sphincteric colonic SMC constructs increased nitrergic innervations, and inhibition of BMP2 with noggin in sphincteric constructs decreased functional relaxation. These studies provide: (a) the first bioengineered innervated pylorus and LES constructs; (b) physiologically relevant models to investigate SMCs and adult NPCs interactions; and (c) evidence of the region-specific effects of SMCs on neural differentiation mediated by BMP2. Furthermore, this study paves the way for the development of innervated bioengineered GI tissue constructs tailored to specific disorders and locations within the gut. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Canal Anal/fisiologia , Diferenciação Celular , Músculo Liso/inervação , Músculo Liso/fisiologia , Neurônios/citologia , Acetilcolina/farmacologia , Animais , Bioengenharia , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Meios de Cultivo Condicionados/farmacologia , Estimulação Elétrica , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nitratos/farmacologia , Fenótipo , Coelhos , Alicerces Teciduais/química
6.
Stem Cells Transl Med ; 4(6): 548-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873745

RESUMO

UNLABELLED: Appendix-derived neural progenitor cells (NPCs) have both neurogenic and gliogenic potential, but use of these cells for enteric neural cell therapy has not been addressed. The objective of this study was to determine whether NPCs obtained from the appendix would differentiate into enteric neural subsets capable of inducing neurotransmitter-mediated smooth muscle cell (SMC) contraction and relaxation. NPCs were isolated from the appendix and small intestine (SI) of rabbits. Bioengineered internal anal sphincter constructs were developed using the same source of smooth muscle and innervated with NPCs derived from either the appendix or SI. Innervated constructs were assessed for neuronal differentiation markers through Western blots and immunohistochemistry, and functionality was assessed through force-generation studies. Expression of neural and glial differentiation markers was observed in constructs containing appendix- and SI-derived NPCs. The addition of acetylcholine to both appendix and SI constructs caused a robust contraction that was decreased by pretreatment with the neural inhibitor tetrodotoxin (TTX). Electrical field stimulation caused relaxation of constructs that was completely abolished in the presence of TTX and significantly reduced on pretreatment with nitric oxide synthase inhibitor (Nω-nitro-l-arginine methyl ester hydrochloride [l-NAME]). These data indicate that in the presence of identical soluble factors arising from intestinal SMCs, enteric NPCs derived from the appendix and SI differentiate in a similar manner and are capable of responding to physiological stimuli. This coculture paradigm could be used to explore the nature of the soluble factors derived from SMCs and NPCs in generating specific functional innervations. SIGNIFICANCE: This study demonstrates the ability of neural stem cells isolated from the appendix to differentiate into mature functional enteric neurons. The differentiation of neural stem cells from the appendix is similar to differentiation of neural stem cells derived from the gastrointestinal tract. The appendix is a vestigial organ that can be removed with minimal clinical consequence through laparoscopy. Results presented in this paper indicate that the appendix is a potential source of autologous neural stem cells required for cell therapy for the gastrointestinal tract.


Assuntos
Apêndice , Músculo Liso/inervação , Células-Tronco Neurais , Engenharia Tecidual , Animais , Antígenos de Diferenciação/biossíntese , Apêndice/citologia , Apêndice/metabolismo , Separação Celular , Regulação da Expressão Gênica/fisiologia , Músculo Liso/citologia , Músculo Liso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Coelhos
7.
Immunol Res ; 58(1): 87-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24072428

RESUMO

The role of the tumor microenvironment especially of tumor-associated macrophages (TAMs) in the progression and metastatic spread of breast cancer is well established. TAMs have primarily a M2 (wound-healing) phenotype with minimal cytotoxic activities. The mechanisms by which tumor cells influence TAMs to display a pro-tumor phenotype are still debated although the key roles of immunomodulatory cytokines released by tumor cells, including colony-stimulating factor 1, tumor necrosis factor (TNF) and soluble TNF receptors 1/2, soluble vascular cell adhesion molecule 1, soluble interleukin 6 receptor and amphiregulin, have been demonstrated. Importantly, these factors are released through ectodomain shedding by the activities of the tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17). The role of TACE activation leading to autocrine effects on tumor progression has been extensively studied. In contrast, limited information is available on the role of tumor cell TACE activities on TAMs in breast cancer. TACE inhibitors, currently in clinical trials, will certainly affect TAMs and subsequently treatment outcomes based on the substrates it releases. Furthermore, whether targeting a subset of the molecules shed by TACE, specifically those leading to TAMs with altered functions and phenotype, holds greater therapeutic promises than past clinical trials of TACE antagonists' remains to be determined. Here, the potential roles of TACE ectodomain shedding in the breast tumor microenvironment are reviewed with a focus on the release of tumor-derived immunomodulatory factors shed by TACE that directs TAM phenotypes and functions.


Assuntos
Proteínas ADAM/imunologia , Neoplasias da Mama/imunologia , Ativação Enzimática/imunologia , Macrófagos/imunologia , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM17 , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Fenótipo
8.
Cell Adh Migr ; 7(3): 315-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23722213

RESUMO

Stromal chemokine gradients within the breast tissue microenvironment play a critical role in breast cancer cell invasion, a prerequisite to metastasis. To elucidate which chemokines and mechanisms are involved in mammary cell migration we determined whether mesenchymal D1 stem cells secreted specific chemokines that differentially promoted the invasion of mammary tumor cells in vitro. Results indicate that mesenchymal D1 cells produced concentrations of CCL5 and CCL9 4- to 5-fold higher than the concentrations secreted by 4T1 tumor cells (P < 0.01). Moreover, 4T1 tumor cell invasion toward D1 mesenchymal stem cell conditioned media (D1CM), CCL5 alone, CCL9 alone or a combination CCL5 and CCL9 was observed. The invasion of 4T1 cells toward D1 mesenchymal stem CM was dose-dependently suppressed by pre-incubation with the CCR1/CCR5 antagonist met-CCL5 (P < 0.01). Furthermore, the invasion of 4T1 cells toward these chemokines was prevented by incubation with the broad-spectrum MMP inhibitor GM6001. Additionally, the addition of specific MMP9/MMP13 and MMP14 inhibitors prevented the MMP activities of supernatants collected from 4T1 cells incubated with D1CM, CCL5 or CCL9. Taken together these data highlight the role of CCL5 and CCL9 produced by mesenchymal stem cells in mammary tumor cell invasion.


Assuntos
Quimiocina CCL5/metabolismo , Quimiocinas CC/metabolismo , Proteínas Inflamatórias de Macrófagos/metabolismo , Neoplasias Mamárias Animais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Invasividade Neoplásica , Animais , Antagonistas dos Receptores CCR5 , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CCL1/metabolismo , Quimiocina CCL5/biossíntese , Quimiocinas CC/biossíntese , Meios de Cultivo Condicionados , Dipeptídeos/farmacologia , Matriz Extracelular/metabolismo , Feminino , Proteínas Inflamatórias de Macrófagos/biossíntese , Glândulas Mamárias Animais/patologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Receptores CCR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA