Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 45(4): 788-801, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27742545

RESUMO

C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c+ cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self.


Assuntos
Imunidade Adaptativa/imunologia , Células Dendríticas/imunologia , Motivo de Ativação do Imunorreceptor Baseado em Tirosina/imunologia , Lectinas Tipo C/imunologia , Leishmania major/imunologia , Proteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Animais , Antígeno CD11c/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Receptores Fc/imunologia
2.
Nucleic Acids Res ; 48(11): 6081-6091, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32402089

RESUMO

Herein, we characterize the cellular uptake of a DNA structure generated by rolling circle DNA amplification. The structure, termed nanoflower, was fluorescently labeled by incorporation of ATTO488-dUTP allowing the intracellular localization to be followed. The nanoflower had a hydrodynamic diameter of approximately 300 nanometer and was non-toxic for all mammalian cell lines tested. It was internalized specifically by mammalian macrophages by phagocytosis within a few hours resulting in specific compartmentalization in phagolysosomes. Maximum uptake was observed after eight hours and the nanoflower remained stable in the phagolysosomes with a half-life of 12 h. Interestingly, the nanoflower co-localized with both Mycobacterium tuberculosis and Leishmania infantum within infected macrophages although these pathogens escape lysosomal degradation by affecting the phagocytotic pathway in very different manners. These results suggest an intriguing and overlooked potential application of DNA structures in targeted treatment of infectious diseases such as tuberculosis and leishmaniasis that are caused by pathogens that escape the human immune system by modifying macrophage biology.


Assuntos
DNA/química , DNA/metabolismo , Leishmania infantum/metabolismo , Macrófagos/microbiologia , Macrófagos/parasitologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , DNA/análise , Replicação do DNA , Fluorescência , Meia-Vida , Humanos , Leishmaniose/terapia , Macrófagos/citologia , Macrófagos/imunologia , Nanoestruturas/análise , Nanoestruturas/química , Técnicas de Amplificação de Ácido Nucleico , Fagocitose , Fagossomos/química , Fagossomos/microbiologia , Fagossomos/parasitologia , Tuberculose/terapia
3.
Pharmaceutics ; 12(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987800

RESUMO

Macrophages are hosts for intracellular pathogens involved in numerous diseases including leishmaniasis. They express surface receptors that may be exploited for specific drug-targeting. Recently, we developed a PEGylated dendritic polyglycerol-based conjugate (PG-PEG) that colocalizes with intracellular parasite. We hereby study the effect of surface decoration with mannose units on the conjugates' targeting ability toward leishmania intracellular parasites. Murine and human macrophages were exposed to fluorescently labeled mannosylated PG-PEG and uptake was quantified by flow cytometry analysis. Nanocarriers bearing five mannose units showed the highest uptake, which varied between 30 and 88% in the population in human and murine macrophages, respectively. The uptake was found to be dependent on phagocytosis and pinocytosis (80%), as well as clathrin-mediated endocytosis (79%). Confocal microscopy showed that mannosylated PG-PEGs target acidic compartments in macrophages. In addition, when both murine and human macrophages were infected and treated, colocalization between parasites and mannosylated nanoconjugates was observed. Leishmania-infected bone marrow-derived macrophages (BMM) showed avidity by mannosylated PG-PEG whereas non-infected macrophages rarely accumulated conjugates. Moreover, the antileishmanial activity of Amphotericin B was kept upon conjugation to mannosylated PG-PEG through a pH-labile linker. This study demonstrates that leishmania infected macrophages are selectively targeted by mannosylated PEGylated dendritic conjugates.

4.
Vaccines (Basel) ; 8(1)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210040

RESUMO

Leishmania infantum parasites cause a severe form of visceral leishmaniasis in human and viscerocutaneous leishmaniasis in dogs. Recently, we reported that immunization with an attenuated L. infantum cell line, lacking the hsp70-II gene, protects against the development of murine cutaneous leishmaniasis. In this work, we analyzed the vaccine potential of this cell line towards the long-term protection against murine visceral leishmaniasis. This model shows an organ-dependent evolution of the disease. The infection can resolve in the liver but chronically affect spleen and bone marrow. Twelve weeks after subcutaneous administration of attenuated L. infantum, Bagg Albino (BALB/c) mice were challenged with infective L. infantum parasites expressing the luciferase-encoding gene. Combining in vivo bioimaging techniques with limiting dilution experiments, we report that, in the initial phase of the disease, vaccinated animals presented lower parasite loads than unvaccinated animals. A reduction of the severity of liver damage was also detected. Protection was associated with the induction of rapid parasite-specific IFN-γ production by CD4+ and CD8+ T cells. However, the vaccine was unable to control the chronic phase of the disease, since we did not find differences in the parasite burdens nor in the immune response at that time point.

5.
PLoS Negl Trop Dis ; 13(2): e0007133, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763330

RESUMO

BACKGROUND: Visceral leishmaniasis is a neglected parasitic disease with no vaccine available and its pharmacological treatment is reduced to a limited number of unsafe drugs. The scarce readiness of new antileishmanial drugs is even more alarming when relapses appear or the occurrence of hard-to-treat resistant strains is detected. In addition, there is a gap between the initial and late stages of drug development, which greatly delays the selection of leads for subsequent studies. METHODOLOGY/PRINCIPAL FINDINGS: In order to address these issues, we have generated a red-shifted luminescent Leishmania infantum strain that enables long-term monitoring of parasite burden in individual animals with an in vivo limit of detection of 106 intracellular amastigotes 48 h postinfection. For this purpose, we have injected intravenously different infective doses (104-5x108) of metacyclic parasites in susceptible mouse models and the disease was monitored from initial times to 21 weeks postinfection. The emission of light from the target organs demonstrated the sequential parasite colonization of liver, spleen and bone marrow. When miltefosine was used as proof-of-concept, spleen weight parasite burden and bioluminescence values decreased significantly. CONCLUSIONS: In vivo bioimaging using a red-shifted modified Leishmania infantum strain allows the appraisal of acute and chronic stage of infection, being a powerful tool for accelerating drug development against visceral leishmaniasis during both stages and helping to bridge the gap between early discovery process and subsequent drug development.


Assuntos
Antiprotozoários/farmacologia , Descoberta de Drogas/métodos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/diagnóstico por imagem , Medições Luminescentes , Fosforilcolina/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Leishmaniose Visceral/tratamento farmacológico , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/farmacologia , Baço/parasitologia
6.
Comp Biochem Physiol C Toxicol Pharmacol ; 140(2): 151-64, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15907761

RESUMO

The metabolism of the naturally occurring polyamines-putrescine, spermidine and spermine-is a highly integrated system involving biosynthesis, uptake, degradation and interconversion. Metabolic differences in polyamine metabolism have long been considered to be a potential target to arrest proliferative processes ranging from cancer to microbial and parasitic diseases. Despite the early success of polyamine inhibitors such as alpha-difluoromethylornithine (DFMO) in treating the latter stages of African sleeping sickness, in which the central nervous system is affected, they proved to be ineffective in checking other major diseases caused by parasitic protozoa, such as Chagas' disease, leishmaniasis or malaria. In the use and design of new polyamine-based inhibitors, account must be taken of the presence of up-regulated polyamine transporters in the plasma membrane of the infectious agent that are able to circumvent the effect of the drug by providing the parasite with polyamines from the host. This review contains information on the polyamine requirements and molecular, biochemical and genetic characterization of different transport mechanisms in the parasitic agents responsible for a number of the deadly diseases that afflict underdeveloped and developing countries.


Assuntos
Antiprotozoários/farmacologia , Poliaminas Biogênicas/metabolismo , Desenho de Fármacos , Infecções por Protozoários/tratamento farmacológico , Animais , Poliaminas Biogênicas/biossíntese , Transporte Biológico/efeitos dos fármacos , Eucariotos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA