Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 33(4): e2841, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36920234

RESUMO

Forest removal for livestock grazing is a striking example of human-caused state change leading to a stable, undesirable invasive grass system that is resistant to restoration efforts. Understanding which factors lead to resilience to the alternative grass state can greatly benefit managers when planning forest restoration. We address how thresholds of grass cover and seed rain might influence forest recovery in a restoration project on Hawai'i Island, USA. Since the 1980s, over 400,000 Acacia koa (koa) trees have been planted across degraded pasture, and invasive grasses still dominate the understory with no native woody-plant recruitment. Between this koa/grass matrix are remnant native Metrosideros polymorpha ('ohi'a) trees beneath which native woody plants naturally recruit. We tested whether there were threshold levels of native woody understory that accelerate recruitment under both tree species by monitoring seed rain at 40 trees (20 koa and 'ohi'a) with a range of native woody understory basal area (BA). We found a positive relationship between total seed rain (but not bird-dispersed seed rain) and native woody BA and a negative relationship between native woody BA and grass cover, with no indication of threshold dynamics. We also experimentally combined grass removal levels with seed rain density (six levels) of two common understory species in plots under koa (n = 9) and remnant 'ohi'a (n = 9). Few seedlings emerged when no grass was removed despite adding seeds at densities two to 75 times higher than naturally occurring. However, seedling recruitment increased two to three times once at least 50% of grass was removed. Existing survey data of naturally occurring seedlings also supported a threshold of grass cover below which seedlings were able to establish. Thus, removal of all grasses is not necessary to achieve system responses: Even moderate reductions (~50%) can increase rates of native woody recruitment. The nonlinear thresholds found here highlight how incremental changes to an inhibitory factor lead to limited restoration success until a threshold is crossed. The resources needed to fully eradicate an invasive species may be unwarranted for state change, making understanding where thresholds lie of the utmost importance to prioritize resources.


Assuntos
Florestas , Árvores , Humanos , Havaí , Ilhas , Plantas , Plântula , Sementes , Poaceae , Ecossistema
2.
Ecol Appl ; 32(1): e02477, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657347

RESUMO

Trees can have large effects on soil nutrients in ways that alter succession, particularly in the case of nitrogen-(N)-fixing trees. In Hawai'i, forest restoration relies heavily on use of a native N-fixing tree, Acacia koa (koa), but this species increases soil-available N and likely facilitates competitive dominance of exotic pasture grasses. In contrast, Metrosideros polymorpha ('ohi'a), the dominant native tree in Hawai'i, is less often planted because it is slow growing; yet it is typically associated with lower soil N and grass biomass, and greater native understory recruitment. We experimentally tested whether it is possible to reverse high soil N under koa by adding 'ohi'a litter, using additions of koa litter or no litter as controls, over 2.5 yr. We then quantified natural litterfall and decomposition rates of 'ohi'a and koa litter to place litter additions in perspective. Finally, we quantified whether litter additions altered grass biomass and if this had effects on native outplants. Adding 'ohi'a litter increased soil carbon, but increased rather than decreased inorganic soil N pools. Contrary to expectations, koa litter decomposed more slowly than 'ohi'a, although it released more N per unit of litter. We saw no reduction in grass biomass due to 'ohi'a litter addition, and no change in native outplanted understory survival or growth. We conclude that the high N soil conditions under koa are difficult to reverse. However, we also found that outplanted native woody species were able to decrease exotic grass biomass over time, regardless of the litter environment, making this a better strategy for lowering exotic species impacts.


Assuntos
Solo , Árvores , Biomassa , Ecossistema , Florestas , Nitrogênio , Poaceae
3.
Oecologia ; 181(4): 1233-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27071667

RESUMO

The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures. The goal of the study reported here was to build a more comprehensive understanding of the effects of mean temperature, low-temperature extremes, shading, and their interactions on seedling survival at tropical treelines. We conducted a seedling transplant study using three dominant canopy-forming treeline species in the southern tropical Andes. We found species-specific differences and contrasting responses in seedling survival to changes in mean temperature. The most abundant naturally occurring species at the seedling stage outside the treeline, Weinmannia fagaroides, showed a negative relationship between the survival of transplanted seedlings and mean temperature, the opposite of a priori expectations. Conversely, Clethra cuneata showed increased survival at higher mean temperatures, but survival also increased with higher absolute low temperatures and the presence of shade. Finally, the survival of Gynoxys nitida seedlings was insensitive to temperature but increased under shade. These findings show that multiple factors can determine the upper distributional limit of species forming the current tropical treeline. As such, predictions of future local and regional tropical treeline shifts may need to consider several factors beyond changes in mean temperature. If the treeline remains stationary and cloud forests are unable to expand into higher elevations, there may be severe species loss in this biodiversity hotspot.


Assuntos
Plântula , Árvores , Mudança Climática , Florestas , Especificidade da Espécie , Clima Tropical
4.
Ecology ; 96(7): 1856-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26378308

RESUMO

The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and above tropical treelines can prevent recruitment outside of closed canopy forest for some tree species and may significantly slow treeline advancement despite warming mean temperatures. Predictions of treeline shifts under climate change should be reevaluated to include species-specific' climatic tolerances and measures of climatic variability.


Assuntos
Florestas , Congelamento , Árvores/fisiologia , Altitude , Demografia , Clima Tropical
7.
Ecol Evol ; 5(19): 4315-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26664681

RESUMO

Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA