Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(11): e2118930119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254896

RESUMO

SignificanceHigh-risk (HR) human papillomaviruses (HPV) from the genus alpha cause anogenital and oropharyngeal cancers, whereas the contribution of HPV from the genus beta to the development of cutaneous squamous cell cancer is still under debate. HR-HPV genomes display potent immortalizing activity in human keratinocytes, the natural target cell for HPV. This paper shows that immortalization of keratinocytes by the beta-HPV49 genome requires the inactivation of the viral E8^E2 repressor protein and the presence of the E6 and E7 oncoproteins but also of the E1 and E2 replication proteins. This reveals important differences in the carcinogenic properties of HR-HPV and beta-HPV but also warrants further investigations on the distribution and mutation frequencies of beta-HPV in human cancers.


Assuntos
Betapapillomavirus/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Queratinócitos/virologia , Infecções por Papillomavirus/virologia , Replicação Viral , Linhagem Celular Transformada , Genoma Viral , Humanos , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/genética , RNA Viral
2.
J Virol ; 96(23): e0149822, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36394329

RESUMO

Persistent infections with high-risk human papillomaviruses (HR-HPV) from the genus alpha are established risk factors for the development of anogenital and oropharyngeal cancers. In contrast, HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Keratinocytes are the in vivo target cells for HPV, but keratinocyte models to investigate the replication and oncogenic activities of beta-HPV genomes have not been established. A recent study revealed, that beta-HPV49 immortalizes normal human keratinocytes (NHK) only, when the viral E8^E2 repressor (E8-) is inactivated (T. M. Rehm, E. Straub, T. Iftner, and F. Stubenrauch, Proc Natl Acad Sci U S A 119:e2118930119, 2022, https://doi.org/10.1073/pnas.2118930119). We now demonstrate that beta-HPV8 and HPV38 wild-type or E8- genomes are unable to immortalize NHK. Nevertheless, HPV8 and HPV38 express E6 and E7 oncogenes and other transcripts in transfected NHK. Inactivation of the conserved E1 and E2 replication genes reduces viral transcription, whereas E8- genomes display enhanced viral transcription, suggesting that beta-HPV genomes replicate in NHK. Furthermore, growth of HPV8- or HPV38-transfected NHK in organotypic cultures, which are routinely used to analyze the productive replication cycle of HR-HPV, induces transcripts encoding the L1 capsid gene, suggesting that the productive cycle is initiated. In addition, transcription patterns in HPV8 organotypic cultures and in an HPV8-positive lesion from an EV patient show similarities. Taken together, these data indicate that NHK are a suitable system to analyze beta-HPV8 and HPV38 replication. IMPORTANCE High-risk HPV, from the genus alpha, can cause anogenital or oropharyngeal malignancies. The oncogenic properties of high-risk HPV are important for their differentiation-dependent replication in human keratinocytes, the natural target cell for HPV. HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Currently, the replication cycle of beta-HPV has not been studied in human keratinocytes. We now provide evidence that beta-HPV8 and 38 are transcriptionally active in human keratinocytes. Inactivation of the viral E8^E2 repressor protein greatly increases genome replication and transcription of the E6 and E7 oncogenes, but surprisingly, this does not result in immortalization of keratinocytes. Differentiation of HPV8- or HPV38-transfected keratinocytes in organotypic cultures induces transcripts encoding the L1 capsid gene, suggesting that productive replication is initiated. This indicates that human keratinocytes are suited as a model to investigate beta-HPV replication.


Assuntos
Papillomavirus Humano , Queratinócitos , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Epidermodisplasia Verruciforme/virologia , Queratinócitos/virologia , Neoplasias de Células Escamosas/virologia , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomavirus Humano/genética , Genoma Viral
3.
Front Plant Sci ; 11: 1155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849713

RESUMO

The genome of bipartite geminiviruses in the genus Begomovirus comprises two circular DNAs: DNA-A and DNA-B. The DNA-B component encodes a nuclear shuttle protein (NSP) and a movement protein (MP), which cooperate for systemic spread of infectious nucleic acids within host plants and affect pathogenicity. MP mediates multiple functions during intra- and intercellular trafficking, such as binding of viral nucleoprotein complexes, targeting to and modification of plasmodesmata, and release of the cargo after cell-to-cell transfer. For Abutilon mosaic virus (AbMV), phosphorylation of MP expressed in bacteria, yeast, and Nicotiana benthamiana plants, respectively, has been demonstrated in previous studies. Three phosphorylation sites (T221, S223, and S250) were identified in its C-terminal oligomerization domain by mass spectrometry, suggesting a regulation of MP by posttranslational modification. To examine the influence of the three sites on the self-interaction in more detail, MP mutants were tested for their interaction in yeast by two-hybrid assays, or by Förster resonance energy transfer (FRET) techniques in planta. Expression constructs with point mutations leading to simultaneous (triple) exchange of T221, S223, and S250 to either uncharged alanine (MPAAA), or phosphorylation charge-mimicking aspartate residues (MPDDD) were compared. MPDDD interfered with MP-MP binding in contrast to MPAAA. The roles of the phosphorylation sites for the viral life cycle were studied further, using plant-infectious AbMV DNA-B variants with the same triple mutants each. When co-inoculated with wild-type DNA-A, both mutants infected N. benthamiana plants systemically, but were unable to do so for some other plant species of the families Solanaceae or Malvaceae. Systemically infected plants developed symptoms and viral DNA levels different from those of wild-type AbMV for most virus-plant combinations. The results indicate a regulation of diverse MP functions by posttranslational modifications and underscore their biological relevance for a complex host plant-geminivirus interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA