Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(6): 4980-4986, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722853

RESUMO

Electrode materials with high electrochemical efficiency are required for battery technology that can be used to store renewable energy. Bismuth (Bi) has shown great potential as an electrode material for metal ion batteries due to its large volumetric capacity and reasonable operating potential. However, the cycling performance deteriorates due to the drastic volume changes that occur during alloying and dealloying. Herein, we design a 2D Bi-C metal sheet using density functional theory and investigate the feasibility of this nanosheet for alkali metal ion batteries. The predicted metallic Bi-C monolayer (ML) are highly stable and show sound electrode performance. Moreover, alkali metal atoms exhibit high diffusivities on both sides (Bi and C sides) with low energy barriers of 0.252/0.201, 0.217/0.169, and 0.179/0.136 eV for Li, Na, and K ions, respectively. Furthermore, the Bi-C ML shows high theoretical storage capacities of (485 mA h g-1) for Li and Na and (364 mA h g-1) for K and low open-circuit voltage of 0.12, 0.24, and 0.32 V for Li, Na, and K ions, respectively. These exciting findings show that the predicted Bi-C ML can be used as an anode material for Li-, Na- and K-ion batteries.

2.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985764

RESUMO

With the ever-increasing world population, the energy produced from green, environmentally friendly approaches is in high demand. In this work, we proposed a green and cost-effective strategy for synthesizing a porous carbon electrode decorated with alumina oxide (Al2O3) from cherry blossom leaves using the pyrolysis method followed by a sol-gel method. An Al2O3-coating nano-layer (4-6 nm) is formed on the porous carbon during the composition fabrication, which further adversely affects battery performance. The development of a simple rich-shell-structured C@Al2O3 nanocomposite anode is expected to achieve stable electrochemical performances as lithium storage. A significant contributing factor to enhanced performance is the structure of the rich-shell material, which greatly enhances conductivity and stabilizes the solid-electrolyte interface (SEI) film. In the battery test assembled with composite C@Al2O3 electrode, the specific capacity is 516.1 mAh g-1 at a current density of 0.1 A g-1 after 200 cycles. The average discharge capacity of carbon is 290 mAh g-1 at a current density of 1.0 A g-1. The present study proposes bioinspired porous carbon electrode materials for improving the performance of next-generation lithium-ion batteries.

3.
Materials (Basel) ; 16(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895610

RESUMO

In energy application technology, the anode part of the electrode is typically composed of carbon-coated materials that exhibit excellent electrochemical performance. The carbon-coated electrodes facilitate electrochemical reactions involving the fuel and the oxidant. Energy electrodes are used in stationary power plants to generate electricity for the grid. These large-scale installations are known as distributed generation systems and contribute to grid stability and reliability. Understanding the practical applications of energy materials remains a significant hurdle in the way of commercialization. An anode electrode has one key limitation, specifically with alloy-type candidates, as they tend to exhibit rapid capacity degradation during cycling due to volume expansion. Herein, biomass-derived carbon from sunflowers (seeds husks) via pyrolysis and then bismuth nanoparticles are treated with carbon via a simple wet-chemical method. The electrode Bi@C offers several structural advantages, such as high capacity, good cycling stability, and exceptional capability at the current rate of 500 mA g-1, delivering a capacity of 731.8 mAh g-1 for 200 cycles. The biomass-derived carbon coating protects the bismuth nanoparticles and contributes to enhanced electronic conductivity. Additionally, we anticipate the use of low-cost biomass with hybrid composition has the potential to foster environment-friendly practices in the development of next-generation advanced fuel cell technology.

4.
ACS Appl Mater Interfaces ; 10(21): 17963-17972, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29737833

RESUMO

Volume expansion is a major challenge associated with tin oxide (SnO x), which causes poor cyclability in lithium-ion battery anode. Bare tin dioxide (SnO2), tin dioxide with graphene sheets (SnO2@GS), and bouquet-like nanocomposite structure (Mn2SnO4@GS) are prepared via hydrothermal method followed by annealing. The obtained composite material presents a bouquet structure containing manganese and tin oxide nanoparticle network with graphene sheets. Benefiting from this porous nanostructure, in which graphene sheets provide high electronic pathways to enhance the electronic conductivity, uniformly distributed particles offer accelerated kinetic reaction with lithium ion and reduced volume deviation in the tin dioxide (SnO2) particle during charge-discharge testing. As a consequence, ternary composite Mn2SnO4@GS showed a high rate performance and outstanding cyclability of anode material for lithium-ion batteries. The electrode achieved a specific capacity of about 1070 mA h g-1 at a current density of 400 mA g-1 after 200 cycles; meanwhile, the electrode still delivered a specific capacity of about 455 mA h g-1 at a high current density of 2500 mA g-1. Ternary Mn2SnO4@GS material could facilitate fabrication of unique structure and conductive network as advanced lithium-ion battery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA