Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Harmful Algae ; 10(4): 374-380, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21532966

RESUMO

To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red Tide P01 research group (Florida Red Tide Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red Tide Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project.

2.
Harmful Algae ; 10(2): 138-143, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21499552

RESUMO

Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols.

3.
Harmful Algae ; 10(6): 744-748, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22053149

RESUMO

Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red tide aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.

4.
Harmful Algae ; 10(2): 224-233, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21218152

RESUMO

This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

5.
Harmful Algae ; 9(6): 600-606, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20824108

RESUMO

The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide.

6.
Harmful Algae ; 9(1): 82-86, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161425

RESUMO

Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

7.
Harmful Algae ; 9(2): 186-189, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161504

RESUMO

Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols.

8.
Harmful Algae ; 82: 73-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30928012

RESUMO

Human respiratory and gastrointestinal illnesses can result from exposures to brevetoxins originating from coastal Florida red tide blooms, comprising the marine alga Karenia brevis (K. brevis). Only limited research on the extent of human health risks and illness costs due to K. brevis blooms has been undertaken to date. Because brevetoxins are known neurotoxins that are able to cross the blood-brain barrier, it is possible that exposure to brevetoxins may be associated with neurological illnesses. This study explored whether K. brevis blooms may be associated with increases in the numbers of emergency department visits for neurological illness. An exposure-response framework was applied to test the effects of K. brevis blooms on human health, using secondary data from diverse sources. After controlling for resident population, seasonal and annual effects, significant increases in emergency department visits were found specifically for headache (ICD-9 784.0) as a primary diagnosis during proximate coastal K. brevis blooms. In particular, an increased risk for older residents (≥55 years) was identified in the coastal communities of six southwest Florida counties during K. brevis bloom events. The incidence of headache associated with K. brevis blooms showed a small but increasing association with K. brevis cell densities. Rough estimates of the costs of this illness were developed for hypothetical bloom occurrences.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Humanos , Neurotoxinas
9.
PLoS One ; 14(6): e0218489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220134

RESUMO

Blooms of the toxic microalga Karenia brevis occur seasonally in Florida, Texas and other portions of the Gulf of Mexico. Brevetoxins produced during Karenia blooms can cause neurotoxic shellfish poisoning in humans, massive fish kills, and the death of marine mammals and birds. Brevetoxin-containing aerosols are an additional problem, having a severe impact on beachgoers, triggering coughing, eye and throat irritation in healthy individuals, and more serious respiratory distress in those with asthma or other breathing disorders. The blooms and associated aerosol impacts are patchy in nature, often affecting one beach but having no impact on an adjacent beach. To provide timely information to visitors about which beaches are low-risk, we developed HABscope; a low cost (~$400) microscope system that can be used in the field by citizen scientists with cell phones to enumerate K. brevis cell concentrations in the water along each beach. The HABscope system operates by capturing short videos of collected water samples and uploading them to a central server for rapid enumeration of K. brevis cells using calibrated recognition software. The HABscope has a detection threshold of about 100,000 cells, which is the point when respiratory risk becomes evident. Higher concentrations are reliably estimated up to 10 million cells L-1. When deployed by volunteer citizen scientists, the HABscope consistently distinguished low, medium, and high concentrations of cells in the water. The volunteers were able to collect data on most days during a severe bloom. This indicates that the HABscope can provide an effective capability to significantly increase the sampling coverage during Karenia brevis blooms.


Assuntos
Asma/prevenção & controle , Proliferação Nociva de Algas , Toxinas Marinhas/efeitos adversos , Oxocinas/efeitos adversos , Intoxicação por Frutos do Mar/epidemiologia , Aerossóis/efeitos adversos , Asma/epidemiologia , Dinoflagellida , Florida/epidemiologia , Golfo do México/epidemiologia , Humanos , Microalgas/crescimento & desenvolvimento , Microalgas/patogenicidade , Intoxicação por Frutos do Mar/prevenção & controle , Texas/epidemiologia
10.
Sci Total Environ ; 402(1): 1-8, 2008 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-18501955

RESUMO

With over 50% of the US population living in coastal counties, the ocean and coastal environments have substantial impacts on coastal communities. While many of the impacts are positive, such as tourism and recreation opportunities, there are also negative impacts, such as exposure to harmful algal blooms (HABs) and water borne pathogens. Recent advances in environmental monitoring and weather prediction may allow us to forecast these potential adverse effects and thus mitigate the negative impact from coastal environmental threats. One example of the need to mitigate adverse environmental impacts occurs on Florida's west coast, which experiences annual blooms, or periods of exuberant growth, of the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins called brevetoxins. Wind and wave action can break up the cells, releasing toxin that can then become part of the marine aerosol or sea spray. Brevetoxins in the aerosol cause respiratory irritation in people who inhale it. In addition, asthmatics who inhale the toxins report increase upper and lower airway symptoms and experience measurable changes in pulmonary function. Real-time reporting of the presence or absence of these toxic aerosols will allow asthmatics and local coastal residents to make informed decisions about their personal exposures, thus adding to their quality of life. A system to protect public health that combines information collected by an Integrated Ocean Observing System (IOOS) has been designed and implemented in Sarasota and Manatee Counties, Florida. This system is based on real-time reports from lifeguards at the eight public beaches. The lifeguards provide periodic subjective reports of the amount of dead fish on the beach, apparent level of respiratory irritation among beach-goers, water color, wind direction, surf condition, and the beach warning flag they are flying. A key component in the design of the observing system was an easy reporting pathway for the lifeguards to minimize the amount of time away from their primary duties. Specifically, we provided a Personal Digital Assistant for each of the eight beaches. The portable unit allows the lifeguards to report from their guard tower. The data are transferred via wireless Internet to a website hosted on the Mote Marine Laboratory Sarasota Operations of the Coastal Ocean Observation Laboratories (SO COOL) server. The system has proven to be robust and well received by the public. The system has reported variability from beach to beach and has provided vital information to users to minimize their exposure to toxic marine aerosols.


Assuntos
Asma/etiologia , Dinoflagellida/patogenicidade , Meio Ambiente , Exposição por Inalação , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Saúde Pública , Recreação , Animais , Cidades , Florida , Geografia , Humanos , Água do Mar , Natação , Fatores de Tempo , Tempo (Meteorologia) , Vento
11.
Mar Drugs ; 6(3): 431-55, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19005578

RESUMO

Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented.


Assuntos
Dinoflagellida/química , Doenças Transmitidas por Alimentos/epidemiologia , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Frutos do Mar/análise , Animais , Humanos , Toxinas Marinhas/química , Oxocinas/química
12.
Mar Drugs ; 6(3): 456-79, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19005579

RESUMO

Ciguatera Fish Poisoning (CFP) is the most frequently reported seafood-toxin illness in the world, and it causes substantial physical and functional impact. It produces a myriad of gastrointestinal, neurologic and/or cardiovascular symptoms which last days to weeks, or even months. Although there are reports of symptom amelioration with some interventions (e.g. IV mannitol), the appropriate treatment for CFP remains unclear to many physicians. We review the literature on the treatments for CFP, including randomized controlled studies and anecdotal reports. The article is intended to clarify treatment options, and provide information about management and prevention of CFP, for emergency room physicians, poison control information providers, other health care providers, and patients.


Assuntos
Ciguatera/prevenção & controle , Ciguatera/terapia , Ciguatera/diagnóstico , Ciguatoxinas , Humanos
13.
Chest ; 131(1): 187-94, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17218574

RESUMO

BACKGROUND: With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. METHODS: Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. RESULTS: Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). CONCLUSIONS: This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.


Assuntos
Asma/etiologia , Dinoflagellida/patogenicidade , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Adolescente , Adulto , Aerossóis , Idoso , Animais , Criança , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Ensaio de Imunoadsorção Enzimática , Feminino , Florida , Humanos , Exposição por Inalação , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Testes de Função Respiratória , Inquéritos e Questionários
14.
Arch Clin Neuropsychol ; 22(4): 545-53, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17482422

RESUMO

PURPOSE: The purpose of the study was to evaluate the neuropsychological effects of ciguatera fish poisoning (CFP). METHOD: In a longitudinal matched cohort study, 12 CFP cases and 12 matched friend-controls received baseline neuropsychological evaluations within one month after intoxication and follow-up evaluations approximately six months after baseline. RESULTS: Only one case received intravenous mannitol treatment, which occurred 10 or more days after intoxication. At baseline and follow-up evaluations, there were no statistically significant differences between CFP cases and controls on cognitive measures. At baseline, however, CFP cases endorsed significantly greater subjective toxicity symptoms (e.g. fatigue, tingling sensations) and greater anxiety symptoms than controls. Follow-up evaluations suggested resolution of all symptoms after six months. Subsequent analyses, in which data from this study were pooled with data from an earlier pilot study, supported these results. CONCLUSION: Untreated ciguatera was associated acutely with significant subjective neurotoxicity symptoms and anxiety which were transient, but not with objectively measured cognitive changes. Future investigation with a larger sample size is warranted.


Assuntos
Ciguatera/psicologia , Adulto , Idoso , Transtornos de Ansiedade/etiologia , Estudos de Casos e Controles , Transtornos Cognitivos/etiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Síndromes Neurotóxicas/etiologia , Fatores de Tempo
15.
Mar Drugs ; 5(4): 208-19, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18463727

RESUMO

With an apparent increase of harmful algal blooms (HABs) worldwide, healthcare providers, public health personnel and coastal managers are struggling to provide scientifically-based appropriately-targeted HAB outreach and education. Since 1998, the Florida Poison Information Center-Miami, with its 24 hour/365 day/year free Aquatic Toxins Hotline (1-888-232-8635) available in several languages, has received over 25,000 HAB-related calls. As part of HAB surveillance, all possible cases of HAB-related illness among callers are reported to the Florida Health Department. This pilot study evaluated an automated call processing menu system that allows callers to access bilingual HAB information, and to speak directly with a trained Poison Information Specialist. The majority (68%) of callers reported satisfaction with the information, and many provided specific suggestions for improvement. This pilot study, the first known evaluation of use and satisfaction with HAB educational outreach materials, demonstrated that the automated system provided useful HAB-related information for the majority of callers, and decreased the routine informational call workload for the Poison Information Specialists, allowing them to focus on callers needing immediate assistance and their healthcare providers. These results will lead to improvement of this valuable HAB outreach, education and surveillance tool. Formal evaluation is recommended for future HAB outreach and educational materials.

16.
Toxicon ; 48(8): 1018-26, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17011606

RESUMO

The purpose of this study was to examine the distribution of brevetoxin-3 administered to pregnant dams and to determine the extent of placental transport to fetuses. Twenty-nine pregnant CD-1 mice were administered (3)H-brevetoxin-3 ( approximately 1.3 microCi/animal; approximately 2.8 microg compound/kg) by intratracheal instillation on one of gestational days 15-18. Groups of four or five dams were killed at selected times through 48 h post-dosing. Four pregnant dams were administered (3)H-brevetoxin-3 on gestational day 15 or 16 via osmotic minipump to provide continuous delivery of compound ( approximately 0.13 microCi, 7.5 ng compound/day) over a 72-h period. Then the dams and fetuses were killed. Brevetoxin-associated radioactivity was detected in placentas and fetuses within 0.5h of intratracheal administration. Concentrations of brevetoxin equivalents in fetuses were approximately 0.3 ng/g throughout the 48-h post-dosing, resulting in a calculated dose to fetuses of 19 ng/gh. Following brevetoxin infusion, concentration of brevetoxin equivalents in fetuses was 0.1 ng/g, lower than that present in most maternal tissues. Results demonstrated placental transport of brevetoxin or its metabolites following maternal acute exposure and repeated low-dose exposure. The consequences of these findings for pregnant women exposed to brevetoxins by inhalation or ingestion remain to be determined.


Assuntos
Toxinas Marinhas/metabolismo , Troca Materno-Fetal , Oxocinas/metabolismo , Placenta/metabolismo , Animais , Transporte Biológico , Feminino , Feto/química , Feto/metabolismo , Camundongos , Camundongos Endogâmicos , Placenta/química , Gravidez
17.
Harmful Algae ; 5(5): 526-533, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20357898

RESUMO

Human exposure to Florida red tides formed by Karenia brevis, occurs from eating contaminated shellfish and inhaling aerosolized brevetoxins. Recent studies have documented acute symptom changes and pulmonary function responses after inhalation of the toxic aerosols, particularly among asthmatics. These findings suggest that there are increases in medical care facility visits for respiratory complaints and for exacerbations of underlying respiratory diseases associated with the occurrence of Florida red tides.This study examined whether the presence of a Florida red tide affected the rates of admission with a respiratory diagnosis to a hospital emergency room in Sarasota, FL. The rate of respiratory diagnoses admissions were compared for a 3-month time period when there was an onshore red tide in 2001 (red tide period) and during the same 3-month period in 2002 when no red tide bloom occurred (non-red tide period). There was no significant increase in the total number of respiratory admissions between the two time periods. However, there was a 19% increase in the rate of pneumonia cases diagnosed during the red tide period compared with the non-red tide period. We categorized home residence zip codes as coastal (within 1.6 km from the shore) or inland (>1.6 km from shore). Compared with the non-red tide period, the coastal residents had a significantly higher (54%) rate of respiratory diagnoses admissions than during the red tide period. We then divided the diagnoses into subcategories (i.e. pneumonia, bronchitis, asthma, and upper airway disease). When compared with the non-red tide period, the coastal zip codes had increases in the rates of admission of each of the subcategories during the red tide period (i.e. 31, 56, 44, and 64%, respectively). This increase was not observed seen in the inland zip codes.These results suggest that the healthcare community has a significant burden from patients, particularly those who live along the coast, needing emergency medical care for both acute and potentially chronic respiratory illnesses during red tide blooms.

18.
Am J Trop Med Hyg ; 93(2): 425-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26123957

RESUMO

Ciguatera is the most commonly reported marine food-borne illness worldwide. Because there is a biological plausibility that ciguatera may be impacted by long-term climate variability and Florida is on the northern border of the geographic distribution of ciguatera, it is important to update our understanding of its epidemiology in Florida. We performed an analysis of 291 reports in Florida from 2000 to 2011 and an e-mail survey of 5,352 recreational fishers to estimate incidence and underreporting and identify high risk demographic groups, fish types, and catch locations. Incidence was 5.6 per 100,000 adjusted for underreporting. Hispanics had the highest incidence rate (relative risk [RR] = 3.4) and were more likely to eat barracuda than non-Hispanics. The most common catch locations for ciguatera-causing fish were the Bahamas and Florida Keys. Cases caused by fish from northern Florida were infrequent. These results indicate that ciguatera incidence is higher than estimated from public health reports alone. There is little evidence that incidence or geographic range has increased because of increased seawater temperatures since earlier studies.


Assuntos
Ciguatera/diagnóstico , Ciguatera/epidemiologia , Surtos de Doenças , Adulto , Idoso , Animais , Demografia , Feminino , Peixes , Florida/epidemiologia , Contaminação de Alimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Alimentos Marinhos/análise , Adulto Jovem
19.
Sci Total Environ ; 493: 898-909, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25003583

RESUMO

To mitigate the damages of natural hazards, policy responses can be beneficial only if they are effective. Using a self-administered survey approach, this paper focuses on the adherence to local fertilizer ordinances (i.e., county or municipal rules regulating the application of fertilizer to private lawns or facilities such as golf courses) implemented in jurisdictions along the Southwest Florida coast in response to hazardous blooms of Florida red tides (Karenia brevis). These ordinances play a role in the context of evolving programs of water pollution control at federal, state, water basin, and local levels. With respect to policy effectiveness, while the strength of physical linkages is of critical importance, the extent to which humans affected are aware of and adhere to the relevant rules, is equally critical. We sought to understand the public's depth of understanding about the rationales for local fertilizer ordinances. Respondents in Sarasota, Florida, were asked about their fertilizer practices in an area that has experienced several major blooms of Florida red tides over the past two decades. A highly educated, older population of 305 residents and "snowbirds" reported relatively little knowledge about a local fertilizer ordinance, its purpose, or whether it would change the frequency, size, or duration of red tides. This finding held true even among subpopulations that were expected to have more interest in or to be more knowledgeable about harmful algal blooms. In the face of uncertain science and environmental outcomes, and with individual motivations at odds with evolving public policies, the effectiveness of local community efforts to decrease the impacts of red tides may be compromised. Targeted social-science research on human perceptions about the risks of Florida red tides and education about the rationales for potential policy responses are warranted.


Assuntos
Política Ambiental , Fertilizantes , Fidelidade a Diretrizes , Proliferação Nociva de Algas , Poluição da Água/prevenção & controle , Florida , Humanos , Poluição da Água/legislação & jurisprudência
20.
Environ Int ; 68: 144-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727069

RESUMO

Human respiratory and digestive illnesses can be caused by exposures to brevetoxins from blooms of the marine alga Karenia brevis, also known as Florida red tide (FRT). K. brevis requires macro-nutrients to grow; although the sources of these nutrients have not been resolved completely, they are thought to originate both naturally and anthropogenically. The latter sources comprise atmospheric depositions, industrial effluents, land runoffs, or submerged groundwater discharges. To date, there has been only limited research on the extent of human health risks and economic impacts due to FRT. We hypothesized that FRT blooms were associated with increases in the numbers of emergency room visits and hospital inpatient admissions for both respiratory and digestive illnesses. We sought to estimate these relationships and to calculate the costs of associated adverse health impacts. We developed environmental exposure-response models to test the effects of FRT blooms on human health, using data from diverse sources. We estimated the FRT bloom-associated illness costs, using extant data and parameters from the literature. When controlling for resident population, a proxy for tourism, and seasonal and annual effects, we found that increases in respiratory and digestive illnesses can be explained by FRT blooms. Specifically, FRT blooms were associated with human health and economic effects in older cohorts (≥55 years of age) in six southwest Florida counties. Annual costs of illness ranged from $60,000 to $700,000 annually, but these costs could exceed $1.0 million per year for severe, long-lasting FRT blooms, such as the one that occurred during 2005. Assuming that the average annual illness costs of FRT blooms persist into the future, using a discount rate of 3%, the capitalized costs of future illnesses would range between $2 and 24 million.


Assuntos
Dinoflagellida/química , Exposição Ambiental , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Idoso , Efeitos Psicossociais da Doença , Feminino , Florida , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/economia , Gastroenteropatias/patologia , Humanos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Pneumopatias/economia , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA