Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(41): 18095-18102, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32697377

RESUMO

The key to fully leveraging the potential of the electrochemical CO2 reduction reaction (CO2RR) to achieve a sustainable solar-power-based economy is the development of high-performance electrocatalysts. The development process relies heavily on trial and error methods due to poor mechanistic understanding of the reaction. Demonstrated here is that ionic liquids (ILs) can be employed as a chemical trapping agent to probe CO2RR mechanistic pathways. This method is implemented by introducing a small amount of an IL ([BMIm][NTf2 ]) to a copper foam catalyst, on which a wide range of CO2RR products, including formate, CO, alcohols, and hydrocarbons, can be produced. The IL can selectively suppress the formation of ethylene, ethanol and n-propanol while having little impact on others. Thus, reaction networks leading to various products can be disentangled. The results shed new light on the mechanistic understanding of the CO2RR, and provide guidelines for modulating the CO2RR properties. Chemical trapping using an IL adds to the toolbox to deduce the mechanistic understanding of electrocatalysis and could be applied to other reactions as well.

2.
Angew Chem Int Ed Engl ; 58(22): 7273-7277, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-30882984

RESUMO

Methods that provide real-time information are essential to resolve transients occurring at dynamic interfaces. Now a powerful method is presented that enables the time- and potential-resolved characterization of liquid and gaseous products of electrochemical reactions shortly after their formation. To demonstrate its extraordinary potential, the electrochemical real time mass spectrometry (EC-RTMS) approach is used to determine the products of the CO2 reduction reaction (CO2 RR) during potential step or sweep experiments on pristine and in situ anodized copper. The enhanced formation of several C2+ products over C1 products is tracked directly after copper anodization, with unprecedented temporal resolution. This new technique creates exciting new opportunities for resolving processes that occur at short timescales and eventually for guiding the design of new, robust catalysts for selective electrosynthesis under dynamic operation.

3.
Chem Sci ; 13(37): 11205-11214, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320464

RESUMO

Copper electrodes produce several industrially relevant chemicals and fuels during the electrochemical CO2 reduction reaction (CO2RR). Knowledge about the reaction pathways can help tune the reaction selectivity toward higher-value products. To probe the uncertain role of the C2 molecule glyoxal, we electrochemically reduced it on polycrystalline Cu and quantified its liquid-phase products, namely, ethanol, ethylene glycol, and acetaldehyde. The gas phase contained hydrogen and traces of ethylene. In contrast with previous hypothesis, a one-to-one comparison with CO2RR on Cu indicates that glyoxal is neither a major intermediate in the pathway toward ethylene nor in the pathway toward ethanol. In addition, great possibilities for the selective, low-temperature production of ethylene glycol are open, as computational modelling shows that ethylene glycol and ethanol are produced on different active sites. Thus, apart from the mechanistic insight into CO2RR, this study gives new directions to facilitate the electrification of chemical processes at refineries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA