Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 579(7800): 528-533, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123352

RESUMO

Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers1. An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades2,3. Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots4 to demonstrate Nagaoka ferromagnetism5. This form of itinerant magnetism has been rigorously studied theoretically6-9 but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.

2.
Nature ; 560(7717): 179-184, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046114

RESUMO

Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit-photon coupling strength on the tunable electric dipole moment of the qubit using the 'AC Stark' effect. Our demonstration of strong qubit-photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits.

3.
Phys Rev Lett ; 131(15): 156301, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897778

RESUMO

Bilayers consisting of two-dimensional (2D) electron and hole gases separated by a 10 nm thick AlGaAs barrier are formed by charge accumulation in epitaxially grown GaAs. Both vertical and lateral electric transport are measured in the millikelvin temperature range. The conductivity between the layers shows a sharp tunnel resonance at a density of 1.1×10^{10} cm^{-2}, which is consistent with a Josephson-like enhanced tunnel conductance. The tunnel resonance disappears with increasing densities and the two 2D charge gases start to show 2D-Fermi-gas behavior. Interlayer interactions persist causing a positive drag voltage that is very large at small densities. The transition from the Josephson-like tunnel resonance to the Fermi-gas behavior is interpreted as a phase transition from an exciton gas in the Bose-Einstein-condensate state to a degenerate electron-hole Fermi gas.

4.
Nature ; 548(7665): 70-73, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28770852

RESUMO

Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

5.
Phys Rev Lett ; 122(21): 213601, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283346

RESUMO

We investigate spin states of few electrons in a double quantum dot by coupling them to a magnetic field resilient NbTiN microwave resonator. The electric field of the resonator couples to the electric dipole moment of the charge states in the double dot. For a two-electron state the spin-triplet state has a vanishing electric dipole moment and can therefore be distinguished from the spin-singlet state. This way the charge dipole sensitivity of the resonator response is converted to a spin selectivity. We thereby investigate Pauli spin blockade known from transport experiments at finite source-drain bias. In addition we find an unconventional spin-blockade triggered by the absorption of resonator photons.

6.
Phys Rev Lett ; 122(20): 206802, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172788

RESUMO

Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot charge qubit strongly coupled to a frequency-tunable high-impedance resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state-dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation, and Hahn-echo measurements and find significantly reduced decoherence rates down to γ_{2}/2π∼3 MHz corresponding to coherence times of up to T_{2}∼50 ns for charge states in gate-defined quantum dot qubits. We realize Rabi π pulses of width down to σ∼0.25 ns.

7.
Phys Rev Lett ; 121(4): 043603, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095954

RESUMO

We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit-resonator resonance condition. In this way, we probe the resonance of a qubit that is driven in an adiabatic, a nonadiabatic, or an intermediate rate, showing distinct quantum features of multiphoton processes and a fringe pattern similar to Landau-Zener-Stückelberg interference. Our resonant detection scheme enables the investigation of novel features when the drive frequency is comparable to the resonator frequency. Models based on the adiabatic approximation, rotating wave approximation, and Floquet theory explain our experimental observations.

8.
Phys Rev Lett ; 119(17): 176807, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219432

RESUMO

The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

9.
Phys Rev Lett ; 117(25): 256601, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036219

RESUMO

We report a high-field magnetotransport study of an ultrahigh mobility (µ[over ¯]≈25×10^{6} cm^{2} V^{-1} s^{-1}) n-type GaAs quantum well. We observe a strikingly large linear magnetoresistance (LMR) up to 33 T with a magnitude of order 10^{5}% onto which quantum oscillations become superimposed in the quantum Hall regime at low temperature. LMR is very often invoked as evidence for exotic quasiparticles in new materials such as the topological semimetals, though its origin remains controversial. The observation of such a LMR in the "simplest system"-with a free electronlike band structure and a nearly defect-free environment-excludes most of the possible exotic explanations for the appearance of a LMR and rather points to density fluctuations as the primary origin of the phenomenon. Both, the featureless LMR at high T and the quantum oscillations at low T follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor α that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond ν=1 that likely originate from a different transport mechanism for the composite fermions.

10.
Phys Rev Lett ; 116(13): 136803, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081997

RESUMO

We utilize electron counting techniques to distinguish a spin-conserving fast tunneling process and a slower process involving spin flips in AlGaAs/GaAs-based double quantum dots. By studying the dependence of the rates on the interdot tunnel coupling of the two dots, we find that as many as 4% of the tunneling events occur with a spin flip related to spin-orbit coupling in GaAs. Our measurement has a fidelity of 99% in terms of resolving whether a tunneling event occurred with a spin flip or not.

11.
Phys Rev Lett ; 116(19): 196802, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232032

RESUMO

Space- and time-resolved measurements of spin drift and diffusion are performed on a GaAs-hosted two-dimensional electron gas. For spins where forward drift is compensated by backward diffusion, we find a precession frequency in the absence of an external magnetic field. The frequency depends linearly on the drift velocity and is explained by the cubic Dresselhaus spin-orbit interaction, for which drift leads to a spin precession angle twice that of spins that diffuse the same distance.

12.
Phys Rev Lett ; 117(20): 206803, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886466

RESUMO

We demonstrate an experimental method for measuring quantum state degeneracies in bound state energy spectra. The technique is based on the general principle of detailed balance and the ability to perform precise and efficient measurements of energy-dependent tunneling-in and -out rates from a reservoir. The method is realized using a GaAs/AlGaAs quantum dot allowing for the detection of time-resolved single-electron tunneling with a precision enhanced by a feedback control. It is thoroughly tested by tuning orbital and spin degeneracies with electric and magnetic fields. The technique also lends itself to studying the connection between the ground-state degeneracy and the lifetime of the excited states.

13.
Nano Lett ; 15(12): 7994-9, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26569040

RESUMO

We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigating QPC conductance plateaus affected by the tip at these positions. We compensate the capacitive coupling of the tip to the QPC and discover that interference fringes coexist with distorted QPC plateaus. We spatially resolve the mode structure for each plateau.

14.
Phys Rev Lett ; 115(18): 186804, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26565488

RESUMO

A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients.

15.
Phys Rev Lett ; 115(16): 166603, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26550890

RESUMO

Quantum engineering requires controllable artificial systems with quantum coherence exceeding the device size and operation time. This can be achieved with geometrically confined low-dimensional electronic structures embedded within ultraclean materials, with prominent examples being artificial atoms (quantum dots) and quantum corrals (electronic cavities). Combining the two structures, we implement a mesoscopic coupled dot-cavity system in a high-mobility two-dimensional electron gas, and obtain an extended spin-singlet state in the regime of strong dot-cavity coupling. Engineering such extended quantum states presents a viable route for nonlocal spin coupling that is applicable for quantum information processing.

16.
Phys Rev Lett ; 115(4): 046802, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252704

RESUMO

We explore the microwave radiation emitted from a biased double quantum dot due to the inelastic tunneling of single charges. Radiation is detected over a broad range of detuning configurations between the dot energy levels, with pronounced maxima occurring in resonance with a capacitively coupled transmission line resonator. The power emitted for forward and reverse resonant detuning is found to be in good agreement with a rate equation model, which considers the hybridization of the individual dot charge states.

17.
Phys Rev Lett ; 113(25): 256802, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25554903

RESUMO

We report that the electron spin-relaxation time T_{1} in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit contributions. Different from this prediction, we find that the extrema in the T_{1} do not occur when the magnetic field is along the [110] and [11[over ¯]0] crystallographic directions. This deviation is attributed to an elliptical dot confining potential. The T_{1} varies by more than 1 order of magnitude when rotating a 3 T field, reaching about 80 ms for the optimal angle. We infer from the data that in our device the signs of the Rashba and Dresselhaus constants are opposite.

18.
J Affect Disord ; 361: 465-471, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897305

RESUMO

BACKGROUND: Identifying patients at risk for a suicide attempt (SA) is critical in adolescents with mental disorders. The current study aimed to 1) examine whether personality dysfunction (PD) is associated with previous SA, 2) explore the incremental utility of PD over psychiatric disorders in modeling previous SA. METHODS: The sample comprised of n = 498 adolescent patients (mean age = 15.41 years, 79.12 % females, inpatient 48.8 %, outpatient 51.2 %). SA in the past year, PD according to the alternative DSM-5 model for personality disorders, and psychiatric diagnoses were assessed using semi-structured interviews. Logistic regression and principal component analysis examining the associations and specific patterns of PD and SA in the past year were conducted. Hierarchical (stepwise) logistic regression was applied to investigate the incremental utility of PD over that of psychiatric diagnoses to identify individuals with SA in the past year. RESULTS: Including all facets of PD revealed a significant model with SA in the past year as outcome (χ2(12) = 106.65, McFaddens Pseudo-R2 = 0.17, p < 0.01). Adding PD to the model explained a significant amount of variance in past SA over that of psychiatric diagnoses (Pseudo-R2 = 0.18, Wald χ2 = 43.05, p < 0.01). LIMITATIONS: As we only studied past SA and due to the cross-sectional design, no conclusion regarding the prediction of future SA can be drawn. DISCUSSION: PD should routinely be assessed in adolescent patients since individuals with PD are more likely to have attempted suicide even when controlling for comorbid psychiatric disorders. PD may represent an important target for intervention in those with suicidal thoughts and behaviors.

19.
Phys Rev Lett ; 110(10): 107601, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521296

RESUMO

We investigate the electric manipulation of a single-electron spin in a single gate-defined quantum dot. We observe that so-far neglected differences between the hyperfine- and spin-orbit-mediated electric dipole spin resonance conditions have important consequences at high magnetic fields. In experiments using adiabatic rapid passage to invert the electron spin, we observe an unusually wide and asymmetric response as a function of the magnetic field. Simulations support the interpretation of the line shape in terms of four different resonance conditions. These findings may lead to isotope-selective control of dynamic nuclear polarization in quantum dots.

20.
Sci Rep ; 11(1): 21736, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741080

RESUMO

Electric conductors with dimensions reduced to the nanometer scale are the prerequisite of the quantum devices upon which the future advanced electronics is expected to be based. In the past, the fabrication of one-dimensional (1D) wires has been a particular challenge because they have to be defect-free over their whole length, which can be several tens µm. Excellent 1D wires have been produced by cleaving semiconductors (GaAs, AlGaAs) in ultra high vacuum and overgrowing the pristine edge surface by molecular beam epitaxy (MBE)1,2. Unfortunately, this cleaved edge overgrowth (CEO) technique did not find wide-spread use because it requires a series of elaborate steps that are difficult to accomplish. In this Letter, we present a greatly simplified variation of this technique where the cleaving takes place in ambient air and the MBE overgrowth is replaced by a standard deposition process. Wires produced by this cleaved edge deposition (CED) technique have properties that are as least as good as the traditional CEO ones. Due to its simplicity, the CED technique offers a generally accessible way to produce 1D devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA