Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1773(6): 945-53, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17509699

RESUMO

Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO(*)) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage.


Assuntos
Caspase 3/metabolismo , Glutationa/metabolismo , Peróxidos/farmacologia , Amidinas/farmacologia , Anexina A5/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Radical Hidroxila/metabolismo , Radical Hidroxila/farmacologia , Necrose/enzimologia , Necrose/patologia , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Peróxidos/metabolismo , Fatores de Tempo
2.
Altern Lab Anim ; 35(5): 471-85, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18001169

RESUMO

Human skin is a continual target for chemical toxicity, due to its constant exposure to xenobiotics. The skin possesses a number of protective antioxidant systems, including glutathione and enzymic pathways, which are capable of neutralising reactive oxygen species (ROS). In combination with certain chemicals, the presence of ROS might augment the levels of toxicity, due to photoactivation of the chemical or, alternatively, due to an oxidatively-stressed state in the skin which existed prior to exposure to the chemical. Bithionol is a phototoxic anti-parasitic compound. The mechanism of its toxicity and the possible methods of protection from its damaging effects have been explored. The capacity of keratinocytes to protect themselves from bithionol and other phototoxic chemicals has been investigated. In addition, the potential of endogenous antioxidants, such as vitamin C and E, to afford protection to the cells, has been evaluated. The intracellular glutathione stores of HaCaT keratinocytes were reduced following treatment with biothionol. Following photoactivation, both bithionol and chlorpromazine had similar effects, which suggests that glutathione is important in the detoxification pathway of these chemicals. This was confirmed by means of the visual identification of fluorescently-labelled glutathione. Endogenous antioxidants were unable to protect the HaCaT keratinocytes from bithionol toxicity or chlorpromazine phototoxicity. Amiodarone was shown to have no effect on cellular glutathione levels, which suggests that an alternative mechanism of detoxification was occurring in this case. This was supported by evidence of the protection of HaCaT cells from amiodarone phototoxicity via endogenous antioxidants. Thus, it appears that amiodarone toxicity is dependent on the levels of non-gluathione antioxidants present, whilst bithionol and chlorpromazine detoxification relies on the glutathione antioxidant system. This type of approach could indicate the likely mechanisms of phototoxicity of chemicals in vitro, with relevance to potential effects in vivo.


Assuntos
Amiodarona/toxicidade , Antiarrítmicos/toxicidade , Anti-Infecciosos Locais/toxicidade , Bitionol/toxicidade , Queratinócitos/efeitos dos fármacos , Alternativas aos Testes com Animais , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Clorpromazina/toxicidade , Dermatite Fototóxica/etiologia , Antagonistas de Dopamina/toxicidade , Fluoresceínas , Corantes Fluorescentes , Glutationa/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios Ultravioleta
3.
Biochim Biophys Acta ; 1745(3): 361-9, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16084608

RESUMO

The atherosclerotic plaque is an inflammatory site where macrophage cells are exposed to cytotoxic oxidised low density lipoprotein (oxLDL). Interferon-gamma released from T-cells results in macrophage synthesis of 7,8-dihydroneopterin which has antioxidant and cytoprotective activity. Using the human derived monocyte-like U937 and THP-1 cell lines, we examined whether 7,8-dihydroneopterin could inhibit the cytotoxic effect of oxLDL. In U937 cells, oxLDL caused a dramatic loss of cellular glutathione and caspase independent cell death associated with phosphatidylserine exposure on the plasma membrane. 7,8-Dihydroneopterin completely blocked the cytotoxic effect of oxLDL. In contrast, oxLDL initiated THP-1 cell apoptosis with reduction in cellular thiols, caspase-3 activation and plasma membrane phosphatidylserine exposure. 7,8-Dihydroneopterin was unable to alter these processes or restore the THP-1 cellular thiol content. 7,8-Dihydroneopterin did provide some protection to both THP-1 cells and U937 cells from AAPH derived peroxyl radicals. The preincubation of oxLDL with 7,8-dihydroneopterin did not reduce cytotoxicity, suggesting that 7,8-dihydroneopterin may be acting in U937 cells by scavenging intracellular oxidants generated by the oxLDL. The data show that muM levels of 7,8-dihydroneopterin may prevent oxLDL mediated cellular death within atherosclerotic plaques.


Assuntos
Apoptose/efeitos dos fármacos , Aterosclerose/metabolismo , Lipoproteínas LDL/antagonistas & inibidores , Macrófagos/metabolismo , Neopterina/análogos & derivados , Análise de Variância , Caspase 3 , Caspases/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Fluorescência , Glutationa/metabolismo , Humanos , Interferon gama/metabolismo , Neopterina/farmacologia , Fosfatidilserinas/metabolismo , Compostos de Sulfidrila/metabolismo , Células U937
4.
Front Biosci (Landmark Ed) ; 14(4): 1230-46, 2009 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273127

RESUMO

Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.


Assuntos
Antioxidantes/metabolismo , Aterosclerose/metabolismo , Macrófagos/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Ácido Ascórbico/metabolismo , Morte Celular , Glutationa/metabolismo , Humanos , Macrófagos/enzimologia , Neopterina/análogos & derivados , Neopterina/metabolismo , Oxidantes/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Vitamina E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA