Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Allergy ; 4: 1270326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901762

RESUMO

Introduction: Allergic reactions are mediated by human IgE antibodies that bind to and cross-link allergen molecules. The sites on allergens that are recognized by IgE antibodies have been difficult to investigate because of the paucity of IgE antibodies in a human serum. Here, we report the production of unique human IgE monoclonal antibodies to major inhaled allergens and food allergens that can be produced at scale in perpetuity. Materials and methods: The IgE antibodies were derived from peripheral blood mononuclear cells of symptomatic allergic patients, mostly children aged 3-18 years, using hybridoma fusion technology. Total IgE and allergen-specific IgE was measured by ImmunoCAP. Their specificity was confirmed through ELISA and immunoblotting. Allergenic potency measurements were determined by ImmunoCAP inhibition. Biological activity was determined in vitro by comparing ß-hexosaminidase release from a humanized rat basophilic cell line. Results: Human IgE monoclonal antibodies (n = 33) were derived from 17 allergic patients with symptoms of allergic rhinitis, asthma, atopic dermatitis, food allergy, eosinophilic esophagitis, or red meat allergy. The antibodies were specific for five inhaled allergens, nine food allergens, and alpha-gal and had high levels of IgE (53,450-1,702,500 kU/L) with ratios of specific IgE to total IgE ranging from <0.01 to 1.39. Sigmoidal allergen binding curves were obtained through ELISA, with low limits of detection (<1 kU/L). Allergen specificity was confirmed through immunoblotting. Pairs of IgE monoclonal antibodies to Ara h 6 were identified that cross-linked after allergen stimulation and induced release of significant levels of ß-hexosaminidase (35%-80%) from a humanized rat basophilic cell line. Conclusions: Human IgE monoclonal antibodies are unique antibody molecules with potential applications in allergy diagnosis, allergen standardization, and identification of allergenic epitopes for the development of allergy therapeutics. The IgE antibody probes will enable the unequivocal localization and validation of allergenic epitopes.

2.
Food Chem ; 389: 132986, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35569245

RESUMO

The aim was to develop a fluorescent multiplex array for simultaneously measuring regulated food allergens using specific allergen protein molecules from peanut, tree nut, cow's milk, egg, soy, fish, shellfish, sesame, mustard and celery. Microspheres coupled to specific monoclonal antibodies were used for allergen detection, with purified allergens as reference standards.Standard curves for 17 allergens covered a 5-log dynamic range. Intra- and inter-assay acceptance criteria were within 70-130% recovery and a CV of ≤15%. Food reference materials contained high levels of their respective major allergens (2000-175,000 µg/g), Similar high allergen levels were found in 10 selected foods analysed using a 9-plex array. Egg, milk, peanut, hazelnut and walnut allergens were detectable in chocolate bars with incurred allergens at 3, 10, 30, and 100 ppm. The multiplex array is an efficient tool for measuring specific food allergens, with applications for risk assessment and standardization of therapeutic products for food allergy.


Assuntos
Chocolate , Hipersensibilidade Alimentar , Alérgenos/análise , Animais , Arachis , Bovinos , Corantes/análise , Feminino , Leite/química
3.
Biotechnol Bioeng ; 99(4): 830-45, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17705250

RESUMO

The redox control bioreactor (RCB) is a new hollow fiber membrane bioreactor (HFMBR) design in which oxygen and hydrogen gases are provided simultaneously through separate arrays of juxtaposed hollow fiber (HF) membranes. This study applied the RCB for completely autotrophic conversion of ammonia to N(2) through nitrification with O(2) and denitrification using hydrogen as an electron donor (i.e., autohydrogentrophic denitrification). The hypothesis of this research was that efficient biofilm utilization of O(2) and H(2) at respective HFs would limit transport of these gases to bulk fluid, thereby enabling completely autotrophic ammonia conversion to N(2) through the co-occurrence of ammonia oxidation (O(2)-HF biofilms) and autohydrogenotrophic denitrification (H(2)-HF biofilms). A prototype RCB was fabricated and operated for 215 days on a synthetic, organic-free feedstream containing 217 mg L(-1) NH(4)(+)-N. When O(2) and H(2) were simultaneously supplied, the RCB achieved a steady NH(4)(+)-N removal flux of 5.8 g m(-2) day(-1) normalized to O(2)-HF surface area with a concomitant removal flux of 4.4 g m(-2) day(-1) (NO(3)(-))+NO(2)(-))-N based on H(2)-HF surface area. The significance of H(2) supply was confirmed by an increase in effluent NO(3)(-)-N when H(2) supply was discontinued and a decline in NO(3)(-)-N when H(2) supply was restarted. Increases in H(2) pressure caused decreased ammonia utilization, suggesting that excess H(2) interfered with nitrification. Microprobe profiling across radial transects revealed significant gradients in dissolved O(2) on spatial scales of 1 mm or less. Physiological and molecular analysis of biofilms confirmed that structurally and functionally distinct biofilms developed on adjacent, juxtaposed fibers.


Assuntos
Amônia/metabolismo , Bactérias Aeróbias/metabolismo , Reatores Biológicos/microbiologia , Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Oxirredução , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA