Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Thorac Cardiovasc Surg ; 66(1): 53-62, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216651

RESUMO

For more than 20 years, tremendous efforts have been made to develop cell-based therapies for treatment of heart failure. However, the results of clinical trials using somatic, nonpluripotent stem or progenitor cells have been largely disappointing in both cardiology and cardiac surgery scenarios. Surgical groups were among the pioneers of experimental and clinical myocyte transplantation ("cellular cardiomyoplasty"), but little translational progress was made prior to the development of cellular reprogramming for creation of induced pluripotent stem cells (iPSC). Ever since, protocols have been developed which allow for the derivation of large numbers of autologous cardiomyocytes (CMs) from patient-specific iPSC, moving translational research closer toward clinical pilot trials. However, compared with somatic cell therapy, the technology required for safe and efficacious pluripotent stem cell (PSC)-based therapies is extremely complex and requires tremendous resources and close interactions between basic scientists and clinicians. This review summarizes PSC sources, strategies to derive CMs, current cardiac tissue engineering approaches, concerns regarding immunogenicity and cellular maturity, and highlights the contributions made by surgical groups.


Assuntos
Doenças Cardiovasculares/cirurgia , Células-Tronco Embrionárias/transplante , Miocárdio/patologia , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/transplante , Regeneração , Medicina Regenerativa/métodos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Linhagem da Célula , Reprogramação Celular , Técnicas de Reprogramação Celular , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Resultado do Tratamento
2.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35606086

RESUMO

BACKGROUND: Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS: To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS: The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION: Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Apoptose , Humanos , NF-kappa B/metabolismo , Fosforilação , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA