Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Hazard Mater ; 474: 134646, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838519

RESUMO

This study assessed the application of two specialty adsorbents, also known as green sorption media (GSM), including clay-perlite and sand sorption media (CPS) and zero-valent iron and perlite green environmental media (ZIPGEM) to remove long- and short-chain per- and polyfluoroalkyl substances (PFAS) at field scale. The field-scale demonstration employed four GSM filter cells installed near the C-23 Canal (St. Lucie County, FL), which discharges water to the ecologically sensitive St. Lucie River estuary and to the Atlantic Ocean finally. Although prior lab-scale experiments had demonstrated the effectiveness of CPS and ZIPGEM in treating long-chain PFAS, their performance in field-scale application warranted further investigation. The study reveals the critical roles of divalent cations such as Ca2+ and monovalent cations such as ammonium and hydronium ions, as well as other water quality parameters, on PFAS removal efficacy. Ammonia, most likely resulting from photo- and bacterial ammonification, gives rise to elevated ammonium ion formation in the wet season due to the decrease in pH, which ultimately worsens PFAS adsorption. Moreover, there is a strong negative correlation between pH and PFAS removal efficiency in the presence of ammonia, as evidenced by the reduced removal of PFAS during events associated with low pH.

2.
Environ Pollut ; 349: 123903, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599272

RESUMO

To investigate watershed remediation within a Total Maximum Daily Load program, this study examined the field-scale filtration performance of two specialty absorbents. The goal was to simultaneously remove nutrients and biological pollutants along Canal 23 (C-23) in the St. Lucie River Basin, Florida. The filtration system installed in the C-23 river corridor was equipped with either clay-perlite with sand sorption media (CPS) or zero-valent iron and perlite green environmental media (ZIPGEM). Both media were formulated with varying combinations of sand, clay, perlite, and/or recycled iron based on distinct recipes. In comparison with CPS, ZIPGEM exhibited higher average removal percentages for nutrients. Findings indicated that ZIPGEM could remove total nitrogen up to 49.3%, total Kjeldahl nitrogen up to 67.1%, dissolved organic nitrogen (DON) up to 72.9%, total phosphorus up to 79.6%, and orthophosphate up to 73.2%. Both ZIPGEM and CPS demonstrated similar efficiency in eliminating biological pollutants, such as E. coli (both media exhibiting an 80% removal percentage) and chlorophyll a (both media achieving approximately 95% removal). Seasonality effects were also evident in nutrient removal efficiencies, particularly in the case of ammonia nitrogen; the negative removal efficiency of ammonia nitrogen from the fifth sampling event could be attributed to processes such as photochemical ammonification, microbial transformation, and mineralization of DON in wet seasons. Overall, ZIPGEM demonstrated a more stable nutrient removal efficiency than CPS in the phase of seasonal changes.


Assuntos
Recuperação e Remediação Ambiental , Filtração , Nitrogênio , Fósforo , Dióxido de Silício , Poluentes Químicos da Água , Filtração/métodos , Poluentes Químicos da Água/análise , Recuperação e Remediação Ambiental/métodos , Recuperação e Remediação Ambiental/instrumentação , Florida , Purificação da Água/métodos , Rios/química , Óxido de Alumínio/química , Escherichia coli , Clorofila A , Argila/química , Ferro/química
3.
Environ Sci Technol ; 47(15): 8114-22, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23799646

RESUMO

This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles on biological landfill processes and the form of Zn, Ti, and Ag in leachate following the addition of nanoparticles. Insight into the behavior of nanoparticles in landfill leachate was gained from the observed increase in the aqueous concentrations over background for Zn, Ti, and Ag in some tested leachates attributed to leachate components interacting with the nanoparticle coatings resulting in dispersion, dissolution/dissociation, and/or agglomeration. Coated nanoparticles did not affect biological processes when added to leachate; five-day biochemical oxygen demand and biochemical methane potential results were not statistically different when exposed to nanoparticles, presumably due to the low concentration of dissolved free ionic forms of the associated metals resulting from the interaction with leachate components. Chemical speciation modeling predicted that dissolved Zn in leachate was primarily associated with dissolved organic matter, Ti with hydroxide, and Ag with hydrogen sulfide and ammonia; less than 1% of dissolved Zn and Ag was in the free ionic form, and free ionic Ti and Ag concentrations were negligible.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Metais/análise , Solubilidade , Poluentes Químicos da Água/análise
4.
Waste Manag ; 153: 72-80, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055177

RESUMO

The occurrence of temperatures in municipal solid waste (MSW) landfills in excess of 55 °C is a problem that has gained much attention in the solid waste industry, both domestically and globally. Facilities which frequently experience such temperatures are termed Elevated Temperature Landfills (ETLFs). Ash, both MSW incinerator ash (MSWIA) and coal combustion ash (CCA), when co-disposed with unburned MSW, can provide constituents which are able to partake in abiotic exothermic reactions that may develop or sustain elevated temperatures. These reactions include hydration and carbonation, as well as the oxidation and corrosion of metals commonly found in ash. In this study, sixteen ash samples from across the U.S. were characterized by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy (SEM/XEDS) to identify complex mineral and glassy phases enriched in calcium, silicon, aluminum, and iron. The high-temperature incineration of MSW and coal feedstocks, along with weathering processes impacting these ashes, yield a heterogenous material capable of generating appreciable heat given the right conditions. Additionally, a simple model was developed and, using ash compositions obtained via XEDS, a value termed relative heat potential (RHP) was estimated for each sample. Results show that CCAs may be expected to generate roughly 15 % more heat than MSWIAs when deposited in landfills due to their greater aluminum content.


Assuntos
Incineração , Resíduos Sólidos , Alumínio , Cálcio , Carvão Mineral , Cinza de Carvão/química , Ferro , Minerais , Silício , Resíduos Sólidos/análise , Temperatura , Instalações de Eliminação de Resíduos
5.
J Hazard Mater ; 419: 126361, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34157464

RESUMO

Per and poly-fluoroalkyl substances (PFAS) have been recognized as contaminants of emerging concerns by the United States Environmental Protection Agency (US EPA) due to their environmental impact. Several advisory guidelines were proposed worldwide aimed at limiting their occurrences in the aquatic environments, especially for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). This review paper aims to provide a holistic review in the emerging area of PFAS research by summarizing the spatiotemporal variations in PFAS concentrations in surface water systems globally, highlighting the possible trends of occurrences of PFAS, and presenting potential human health impacts as a result of PFAS exposure through surface water matrices. From the data analysis in this study, occurrences of PFOA and PFOS in many surface water matrices were observed to be several folds higher than the US EPA health advisory level of 70 ng/L for lifetime exposure from drinking water. Direct discharge and atmospheric deposition were identified as primary sources of PFAS in surface water and cryosphere, respectively. While global efforts focused on limiting usages of long-chain PFAS such as PFOS and PFOA, the practices of using short-chain PFAS such as perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) and PFAS alternatives increased substantially. These compounds are also potentially associated with adverse impacts on human health, animals and biota.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/toxicidade , Animais , Água Potável/análise , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Humanos , Ácidos Sulfônicos/toxicidade , Estados Unidos , United States Environmental Protection Agency , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Waste Manag ; 102: 420-431, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734553

RESUMO

This manuscript presents an integrated management scheme for leachate which employed struvite precipitation to recover ammonia nitrogen and phosphorus, aerobic granular sludge process for carbon oxidation (in the form of BOD and sCOD) and single stage anaerobic ammonia oxidation (ANAMMOX) for nitrogen management. The influent fed to the integrated treatment scheme was a mixture of anaerobic digester centrate and real leachate in 4:1 ratio. Almost 77% recovery of phosphorus and 25% removal of NH4+-N were accomplished through struvite precipitation at an optimum pH of 9. High pH contributed to free ammonia loss during struvite precipitation experiments. In the aerobic granular sludge reactor overall, BOD5, COD and NH4+-N removal percentages were 74%, 45% and 35% and in the PN/A reactor, overall 35% removal of total inorganic nitrogen (TIN) was observed. More than 80% BOD removal was recorded in the granular reactor with soluble COD (sCOD) removal fluctuating between 28 and 57% depending on the operational phase. High-throughput amplicon sequencing of 16S rRNA gene targeting V4 region revealed a dominance of phylum Planctomycetes, in the PN/A reactor system. Presence of Rhodobacteraceae, Xanthomonadaceae, Flavobacteriaceae in the granular biomass confirmed the defined redox zones inside mature granules indicating simultaneous removal of nitrogen (N) and organics in aerobic granular sludge technology. Exposing the synthetically cultured aerobic granules directly to the mixture of leachate and centrate unveiled an alteration in physical characteristics of granules; however, reactor operational data and microbial community analysis ascertain the effectiveness of the treatment scheme treating two urban waste-streams.


Assuntos
Reatores Biológicos , Esgotos , Nitrogênio , Nutrientes , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos
7.
Bioresour Technol ; 312: 123578, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506042

RESUMO

Simultaneous functional gene expressions using mRNA, rate measurements, and biochemical analysis proved the consistent contribution of ammonia oxidizers, heterotrophic denitrifiers, and anammox bacteria in a single-stage attached growth partial nitritation/anammox system for nitrogen management in landfill leachate. Average removal efficiencies of ammonia-nitrogen, total inorganic nitrogen, and COD were 94%, 88%, and 26%, respectively, in the reactor. Off-gas N2O fluxes increased at relatively higher dissolved oxygen. Batch activity tests revealed the occurrence of significant anammox activity even in the presence of high concentrations of organic carbon in the influent. mRNA based functional expressions of nitrite reductase (nirK and nirS) and hydrazine synthase (hzsA) suggested simultaneous active heterotrophic denitrification and anammox, respectively. 16S rRNA amplicon sequencing revealed Proteobacteria (36-56%), Planctomycetes (10-31%), and Bacteroidetes (6-39%) as dominant phyla in the reactor. Candidatus brocadia was observed as the most abundant genus representing anammox community.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Amônia , Reatores Biológicos , Desnitrificação , Oxirredução , RNA Ribossômico 16S
8.
Waste Manag ; 118: 55-61, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889234

RESUMO

The occurrence of elevated temperatures within landfills is a challenging issue for landfill operators to detect and correct. Little is known regarding the causes of elevated temperatures (ETs) or the number of landfills currently operating under such conditions. Therefore, the goal of this research was to determine which landfills within Florida have been impacted by ETs, and to develop a more complete understanding of the factors that may lead to these landfills becoming elevated temperature landfills (ETLFs). Historical landfill gas wellhead data, waste deposition reports, and landfill site geometry were collected for 27 landfill cells through the Florida Department of Environmental Protection electronic document management system, OCULUS database and from landfill operators and owners. These data were evaluated to quantify the characteristics that result in landfills having 'elevated' temperatures. Gas data included landfill gas temperatures and methane, carbon dioxide, and balance gas content. Furthermore, landfill maps were created in ArcGIS to observe spatial distribution of ETs in landfills over time. Upon analysis of the landfill gas wellhead data, it was discovered that 74% of studied landfill cells had ET readings; regulatory limits specify a maximum allowable gas temperature of 55 °C (131 °F). It was discovered that 37% of landfill cells contained MSW ash; of these cells, 90% of them are considered ETLFs. ETLF cells are on-average double the site area and approximately 6 m deeper than the average non-ETLF cell. Furthermore, results suggest that heat propagation in most landfills is limited; however, heat propagation is possible if gas wells are turned off for an extended time period.


Assuntos
Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Dióxido de Carbono/análise , Florida , Metano , Temperatura
9.
Waste Manag ; 29(5): 1558-67, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19167875

RESUMO

Because effective operation of bioreactor landfills involves careful operation and construction of infrastructure beyond that necessary in traditional landfills, upfront capital and operating costs are greater than those associated with traditional landfills. Prior to investing in bioreactor landfills, landfill owners must be convinced that larger short-term expenses (e.g., liquid and/or air injection infrastructure) will be balanced by future economic benefits (e.g., extension of landfill life, reduced leachate treatment costs, etc.). The purpose of this paper is to describe an economic model developed to evaluate the impact of various operational (anaerobic, aerobic, or hybrid) and construction (retrofit and as-built) bioreactor landfill strategies on project economics. Model results indicate retrofit bioreactor landfills are more expensive than traditional landfills, while both the as-built and aerobic bioreactor landfills are less costly. Simulation results indicate the parameters that influence bioreactor economics most significantly are airspace recovery, gas recovery and subsequent use to generate electricity, and savings resulting from reduced leachate treatment costs.


Assuntos
Reatores Biológicos , Modelos Econométricos , Eliminação de Resíduos/economia , Eliminação de Resíduos/métodos , Simulação por Computador , Análise Custo-Benefício
10.
Waste Manag ; 29(5): 1547-57, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19254832

RESUMO

The ability of resistance-based sensors to measure in situ waste moisture content in a landfill was examined. One hundred and thirty-five resistance-based sensors were installed in a leachate recirculation well field at a bioreactor landfill in Florida, US. The performance of these sensors was studied for a period of over 6 years. The sensors were found to respond to an increase in moisture resulting from leachate recirculation. It was observed that 78% of sensors worked successfully in the field during the study period. The initial spatial average moisture content determined by the sensor readings (using a laboratory-derived calibration) was 42.8% compared to 23% from gravimetric readings. Eighteen sensors (13%) showed that they were saturated before liquid addition, and no change in moisture content was observed in these sensors during the study period. Laboratory-derived calibration methods resulted in an over-estimation of moisture content. An alternate field-calibration method, where wetted sensor output was assumed equal to the average of gravimetric measurements for wet samples, was evaluated. The final spatial average moisture contents were 64.2% and 44.4% for the laboratory-derived and field-derived calibration methodologies, respectively, compared to 45% measured gravimetrically from excavated waste samples. When moisture content was determined using a mass balance approach, the result was 34.6%. The results suggest that when appropriately calibrated, resistivity-based sensors can be used to obtain a reasonably accurate estimate of local moisture content. However, caution should be taken to extend the moisture content values that are representative of waste surrounding the sensors to estimate the overall moisture content on the landfill-wide scale.


Assuntos
Reatores Biológicos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Eliminação de Resíduos/instrumentação , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/análise , Florida , Água/análise
11.
Chemosphere ; 227: 34-42, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30981968

RESUMO

Solid waste and leachate samples from bench-scale anaerobic bioreactors and flushing bioreactors (FBs), containing mature waste were characterized using Fourier Transform Infrared Spectroscopy (FTIR) to provide a better understanding of the changes in waste characteristics when waste transitions from mature to stabilized. Humic acid (HA) extracted from mature waste and waste removed from the FBs were characterized using FTIR and 13C nuclear magnetic resonance. FBs were operated under three different treatment scenarios (flushing with clean water, recirculation of leachate treated by chemical oxidation, and recirculation of leachate treated by chemical oxidation with waste aeration. FTIR spectra of FB waste and leachate supported the stabilization of waste that occurred after the additional treatment. There was a shift in the dominance of organic to inorganic functional groups when compared to changes in conventional parameters that aligned with published values on waste stability. HA extracted from the mature waste were dominated by aliphatic carbon and aromatic carbon was less intense. Treatment by flushing resulted in a decrease in aliphatic carbon and an increase in aromatic carbon. HA extracted from reactors with oxidized leachate recirculation and aeration decreased in aliphatic carbon content, with minimal change in aromatic carbon. Therefore, the additional treatment did not result in an increase in the reactivity potential of the HA which aligns with FTIR and principal component analysis. Results suggest that spectroscopic techniques could be used to assess the stability of waste samples as opposed to more time-consuming analyses.


Assuntos
Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Reatores Biológicos , Análise de Fourier , Substâncias Húmicas/análise
12.
Waste Manag ; 88: 257-267, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079638

RESUMO

There are growing concerns over the negative effects of leachate organic matter (LOM) on ultraviolet (UV) disinfection and effluent quality when leachate is co-treated with domestic wastewater. In this study, the effects of LOM on wastewater effluent quality were evaluated through field studies at wastewater treatment plants (WWTPs) that receive and do not receive leachate. Impacts of leachate on effluent quality were determined through UV measurements at 254 nm (UV254), fluorescence measurements, and the quantification of conventional parameters which included nutrient and organic constituent concentrations. Results showed that some leachate impacts can be observed using UV254 spectroscopy in wastewater influent and effluent when present at volumetric contributions as low as 0.01%. In addition, leachate impacted wastewater samples showed a higher dissolved organic nitrogen and dissolved organic carbon concentrations in the effluent relative to effluents from WWTPs without leachate. At leachate volumetric contributions greater than or equal to 0.1% (0.10-14.8%), UV254 transmittance in wastewater effluents was below 65%. A typical guideline for effective UV disinfection at WWTPs is above 65% transmittance. Furthermore, fluorescence characterization of leachate-impacted wastewater showed a higher intensity of humic-like peaks relative to wastewater without leachate. This research provided a better understanding of the potential implications of accepting leachate at WWTPs. These effects, however, can be managed by ensuring that leachate discharge is maintained at acceptable volumetric contributions and evenly spread out over the discharge period.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carbono , Desinfecção , Nitrogênio , Eliminação de Resíduos Líquidos
13.
Waste Manag ; 94: 18-26, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279392

RESUMO

Leachate organic matter (LOM) from mature, stabilized landfills is recalcitrant in nature resulting from high concentrations of humic substances, such as humic acids and other complex organic matter. This research focused on the behavior and fate of LOM in aquatic sun-lit systems to address the extent and mechanisms of LOM photodegradation by exposing leachate to natural sunlight in central Florida for a period of 90 days. Transformation processes were measured using ultraviolet-visible (UV-Vis) spectroscopy, fluorescence excitation-emission matrix spectroscopy, size-exclusion chromatography, and chemical oxygen demand over the test period. Results of the study suggest that photolytic, and in some cases biological, reactions were responsible for the reduction of LOM demonstrated by the transformation of high molecular weight recalcitrant material to lower molecular weight material, loss of fluorescence and color, and reduction of UV254 absorbance.


Assuntos
Luz Solar , Poluentes Químicos da Água , Florida , Substâncias Húmicas , Instalações de Eliminação de Resíduos
14.
Water Environ Res ; 80(6): 561-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18686931

RESUMO

This study examined whether ferrate could meet the international standards for successful ballast water treatment, including final concentrations of less than 1 CFU/mL of Enterococci, less than 2.5 CFU/mL of Escherichia coli, and less than 1 CFU/100 mL of Vibrio cholerae. Pure cultures of E. coli, Klebsiella pneumoniae, and V. cholerae, and a mixed culture of Enterococcus faecium and E. faecilis were grown in saline solution to simulate ballast water and were treated with dosages of ferrate ranging from 0.25 to 5.0 mg/L. A ferrate dose of 5 mg/L resulted in complete disinfection of all organisms tested, and smaller dosages were also very effective. Tailing was consistently observed, and the Hom's model (1972) appeared to most accurately represent the action of ferrate on these organisms. Salinity and pH did not adversely affect results, and regrowth was not a problem. Ferrate shows good potential as an effective disinfectant in the treatment of ballast water.


Assuntos
Desinfetantes/farmacologia , Ferro/farmacologia , Microbiologia da Água , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Klebsiella pneumoniae/efeitos dos fármacos , Cloreto de Sódio , Vibrio cholerae/efeitos dos fármacos
15.
Waste Manag ; 74: 52-62, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29366796

RESUMO

Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water.


Assuntos
Alimentos , Gerenciamento de Resíduos , Incineração , Reciclagem , Água
16.
Water Res ; 41(9): 1907-14, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17368502

RESUMO

Microcosm experiments aimed at defining a rate equation that describes how different environmental conditions (i.e., gas-phase oxygen concentrations, temperature and ammonia concentration) may impact in situ ammonia removal were conducted. Results indicate that ammonia removal can readily occur at various gas-phase oxygen levels (between 0.7% and 100%) and over a range of temperatures (22, 35 and 45 degrees C). Slowest rates occurred with lower gas-phase oxygen concentrations. All rate data, except at 45 degrees C and 5% oxygen, fit well (r2=0.75) to a multiplicative Monod equation with terms describing the impact of oxygen, pH, temperature and ammonia concentration. All ammonia half-saturation values are relatively high when compared to those generally found in wastewater treatment, suggesting that the rate may be affected by the mass transfer of oxygen and/or ammonia. Additionally, as the temperature increases, the ammonia half-saturation value also increases. The multiplicative Monod model developed can be used to aid in designing and operating field-scale studies.


Assuntos
Amônia/isolamento & purificação , Reatores Biológicos , Gases/química , Oxigênio/química , Temperatura , Poluentes Químicos da Água/química , Cinética , Eliminação de Resíduos , Poluentes Químicos da Água/isolamento & purificação
17.
Waste Manag ; 27(7): 946-53, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16843651

RESUMO

Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Modelos Teóricos , Eliminação de Resíduos , Gases , Cinética
18.
Waste Manag ; 27(7): 921-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17258446

RESUMO

Methodology for the accounting, generation, and composition of building-related construction and demolition (C&D) at a regional level was explored. Six specific categories of debris were examined: residential construction, nonresidential construction, residential demolition, nonresidential demolition, residential renovation, and nonresidential renovation. Debris produced from each activity was calculated as the product of the total area of activity and waste generated per unit area of activity. Similarly, composition was estimated as the product of the total area of activity and the amount of each waste component generated per unit area. The area of activity was calculated using statistical data, and individual site studies were used to assess the average amount of waste generated per unit area. The application of the methodology was illustrated using Florida, US approximately 3,750,000 metric tons of building-related C&D debris were estimated as generated in Florida in 2000. Of that amount, concrete represented 56%, wood 13%, drywall 11%, miscellaneous debris 8%, asphalt roofing materials 7%, metal 3%, cardboard 1%, and plastic 1%. This model differs from others because it accommodates regional construction styles and available data. The resulting generation amount per capita is less than the US estimate - attributable to the high construction, low demolition activity seen in Florida.


Assuntos
Materiais de Construção , Modelos Teóricos , Resíduos/classificação , Florida
19.
Waste Manag ; 27(2): 220-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16540305

RESUMO

Hydrogen sulfide (H2S) has been identified as a principal odorous component of gaseous emissions from construction and demolition debris (C&D) landfills. Although several studies have reported the ambient concentrations of H2S near C&D landfills, few studies have quantified emission rates of H2S. One of the most widely used techniques for measuring surface gas emission rates from landfills is the flux chamber method. Flux measurements using the flux chamber were performed at five different C&D landfills from April to August, 2003. The flux rates of H2S measured in this research were between 0.192 and 1.76 mg/(m2-d).


Assuntos
Monitoramento Ambiental , Sulfeto de Hidrogênio , Gerenciamento de Resíduos , Resíduos/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise
20.
Waste Manag ; 27(6): 729-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16824745

RESUMO

In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.


Assuntos
Eliminação de Resíduos/métodos , Água/química , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA