Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612588

RESUMO

Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Síndromes Neurotóxicas , Humanos , Células Endoteliais , Adenocarcinoma de Pulmão/genética , Neoplasias Encefálicas/genética , Neoplasias Pulmonares/genética , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769181

RESUMO

Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Masculino , Fumar/efeitos adversos , Fumar/metabolismo , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Pulmão/patologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Inflamação/complicações , Inflamação/metabolismo , Comorbidade , Microambiente Tumoral
3.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240238

RESUMO

Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia , Biópsia Líquida/métodos , Neoplasias Pulmonares/diagnóstico , Biópsia/métodos , Células Neoplásicas Circulantes/patologia
4.
Cell Physiol Biochem ; 55(S2): 1-12, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398982

RESUMO

BACKGROUND/AIMS: Lung carcinoids are uncommon neuroendocrine tumours. Molecular features of lung carcinoids have been poorly defined. microRNAs (miRNAs) are potent gene expression regulators with important roles in cancer development and progression. However, little is known on the role of miRNAs in the pathogenesis of lung carcinoids. Our goals were to identify commonly deregulated miRNAs in a rare case of lung carcinoid of typical histology with metastasis, as well as map miRNA target genes in pathways potentially associated with disease development and progression. METHODS: miRNA expression profiles were assessed using the TaqMan Low Density Arrays, which is a platform including 384 miRNAs. miRNA profiles were generated in the tumor and its corresponding lymph node metastasis, compared to reference normal lung tissues. Furthermore, miRNA expression was validated in a separate, publicly available external dataset (n=19 typical lung carcinoids; 2/19 were metastatic tumors, compared to six normal lung tissues, GSE77380). Following this analysis, computational tools were applied for data interpretation. miRTarBase was used to determine miRNA-target genes, followed by ToppGene Suite analysis to identify pathways and biological functions. In addition, the expression of genes targeted by miRNAs was validated in a second, separate external dataset (n=13 tumour samples, GSE35679). GEO2R data analysis tool was used in both validation analyses (miRNAs and genes). RESULTS: We identified 15 commonly significantly downregulated miRNAs (fold change, FC≥2 and p<0.05) in the tumour and its paired metastasis, with further decreasing levels in the metastatic lesion. Downregulation of miR-126-3p and miR-146b-5p was validated in the external dataset GSE77380. In addition, SOX2 and TCF4 genes, targeted by miR-126-3p, were consistently overexpressed in a subset of six typical lung carcinoids from the external dataset GSE35679. Pathways analysis showed that miRNAs miR-126-3p and miR-146b-5p target genes with a role in the regulation of adaptive immune response. CONCLUSION: Our results contribute to the identification of miRNA expression changes in a typical lung carcinoid and its corresponding lymph node metastasis. Down-regulated levels of miR-126-3p and miR-146b-5p and target gene over-expression could play a role in the progression of this case of primary typical lung carcinoid to regional metastasis. Identified miRNAs and target genes are potential candidates for validation in a larger number of cases.


Assuntos
Tumor Carcinoide/genética , Tumor Carcinoide/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , MicroRNAs/imunologia , Imunidade Adaptativa/genética , Adulto , Biomarcadores Tumorais/genética , Tumor Carcinoide/patologia , Biologia Computacional/métodos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Metástase Linfática , MicroRNAs/genética , Estadiamento de Neoplasias
5.
Hum Genomics ; 12(1): 16, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587854

RESUMO

MicroRNAs (miRNAs) are crucial regulators of gene expression in normal development and cellular homeostasis. While miRNA repositories contain thousands of unique sequences, they primarily contain molecules that are conserved across several tissues, largely excluding lineage and tissue-specific miRNAs. By analyzing small non-coding RNA sequencing data for abundance and secondary RNA structure, we discovered 103 miRNA candidates previously undescribed in liver tissue. While expression of some of these unannotated sequences is restricted to non-malignant tissue, downregulation of most of the sequences was detected in liver tumors, indicating their importance in the maintenance of liver homeostasis. Furthermore, target prediction revealed the involvement of the unannotated miRNA candidates in fatty-acid metabolism and tissue regeneration, which are key pathways in liver biology. Here, we provide a comprehensive analysis of the undiscovered liver miRNA transcriptome, providing new resources for a deeper exploration of organ-specific biology and disease.


Assuntos
Fígado/metabolismo , MicroRNAs/genética , Transcriptoma/genética , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/metabolismo , Especificidade de Órgãos , Análise de Sequência de RNA
6.
Cell Microbiol ; 18(10): 1444-58, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26945693

RESUMO

Helicobacter pylori cause chronic inflammation favouring gastric carcinogenesis, and its eradication may prevent malignant transformation. We evaluated whether H. pylori infection and its eradication modify the expression of inflammatory mediators in patients with chronic gastritis. Furthermore, we assessed whether microRNAs modulate inflammatory pathways induced by H. pylori and identified miRNA-gene interaction networks. mRNA and protein expression of TNFA, IL6, IL1B, IL12A, IL2 and TGFBRII and miRNAs miR-103a-3p, miR-181c-5p, miR-370-3p, miR-375 and miR-223-3p were evaluated in tissue samples from 20 patients with chronic gastritis H. pylori negative (Hp-) and 31 H. pylori positive (Hp+), before and three months after bacterium eradication therapy, in comparison with a pool of Hp- normal gastric mucosa. Our results showed that H. pylori infection leads to up-regulation of TNFA, IL6, IL12A and IL2 and down-regulation of miRNAs. Bacterium eradication reduces the expression of TNFA and IL6 and up-regulates TGFBRII and all investigated miRNAs, except miR-223-3p. Moreover, transcriptional profiles of inflammatory mediators and miRNAs after eradication are different from the non-infected group. Deregulated miRNA-mRNA interaction networks were observed in the Hp+ group before and after eradication. Therefore, miRNAs modulated cytokine expression in the presence of H. pylori and after its eradication, suggesting that miRNAs participate in the pathological process triggered by H. pylori in the gastric mucosa.


Assuntos
Gastrite/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/imunologia , MicroRNAs/genética , Adolescente , Adulto , Idoso , Citocinas/genética , Citocinas/metabolismo , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/imunologia , Gastrite/microbiologia , Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
7.
Hum Mol Genet ; 23(10): 2618-28, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24403051

RESUMO

A significant proportion (up to 62%) of oral squamous cell carcinomas (OSCCs) may arise from oral potential malignant lesions (OPMLs), such as leukoplakia. Patient outcomes may thus be improved through detection of lesions at a risk for malignant transformation, by identifying and categorizing genetic changes in sequential, progressive OPMLs. We conducted array comparative genomic hybridization analysis of 25 sequential, progressive OPMLs and same-site OSCCs from five patients. Recurrent DNA copy number gains were identified on 1p in 20/25 cases (80%) with minimal, high-level amplification regions on 1p35 and 1p36. Other regions of gains were frequently observed: 11q13.4 (68%), 9q34.13 (64%), 21q22.3 (60%), 6p21 and 6q25 (56%) and 10q24, 19q13.2, 22q12, 5q31.2, 7p13, 10q24 and 14q22 (48%). DNA losses were observed in >20% of samples and mainly detected on 5q31.2 (35%), 16p13.2 (30%), 9q33.1 and 9q33.29 (25%) and 17q11.2, 3p26.2, 18q21.1, 4q34.1 and 8p23.2 (20%). Such copy number alterations (CNAs) were mapped in all grades of dysplasia that progressed, and their corresponding OSCCs, in 70% of patients, indicating that these CNAs may be associated with disease progression. Amplified genes mapping within recurrent CNAs (KHDRBS1, PARP1, RAB1A, HBEGF, PAIP2, BTBD7) were selected for validation, by quantitative real-time PCR, in an independent set of 32 progressive leukoplakia, 32 OSSCs and 21 non-progressive leukoplakia samples. Amplification of BTBD7, KHDRBS1, PARP1 and RAB1A was exclusively detected in progressive leukoplakia and corresponding OSCC. BTBD7, KHDRBS1, PARP1 and RAB1A may be associated with OSCC progression. Protein-protein interaction networks were created to identify possible pathways associated with OSCC progression.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Leucoplasia Oral/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Análise por Conglomerados , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Genoma Humano , Humanos , Leucoplasia Oral/diagnóstico , Masculino , Pessoa de Meia-Idade , Prognóstico
8.
BMC Med Genet ; 17: 4, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26772808

RESUMO

BACKGROUND: Hemangioma is a common benign tumor in the childhood; however our knowledge about the molecular mechanisms of hemangioma development and progression are still limited. Currently, microRNAs (miRNAs) have been shown as gene expression regulators with an important role in disease pathogenesis. Our goals were to identify miRNA-mRNA expression networks associated with infantile hemangioma. METHODS: We performed a meta-analysis of previously published gene expression datasets including 98 hemangioma samples. Deregulated genes were further used to identify microRNAs as potential regulators of gene expression in infantile hemangioma. Data were integrated using bioinformatics methods, and genes were mapped in proteins, which were then used to construct protein-protein interaction networks. RESULTS: Deregulated genes play roles in cell growth and differentiation, cell signaling, angiogenesis and vasculogenesis. Regulatory networks identified included microRNAs miR-9, miR-939 and let-7 family; these microRNAs showed the most number of interactions with deregulated genes in infantile hemangioma, suggesting that they may have an important role in the molecular mechanisms of disease. Additionally, results were used to identify drug-gene interactions and druggable gene categories using Drug-Gene Interaction Database. We show that microRNAs and microRNA-target genes may be useful biomarkers for the development of novel therapeutic strategies for patients with infantile hemangioma. CONCLUSIONS: microRNA-regulated pathways may play a role in infantile hemangioma development and progression and may be potentially useful for future development of novel therapeutic strategies for patients with infantile hemangioma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Hemangioma/genética , MicroRNAs/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Progressão da Doença , Humanos , Lactente , MicroRNAs/metabolismo , Mapas de Interação de Proteínas
9.
Exp Cell Res ; 326(1): 103-11, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24929113

RESUMO

Clinical experience for peripheral arterial disease treatment shows poor results when synthetic grafts are used to approach infrapopliteal arterial segments. However, tissue engineering may be an option to yield surrogate biocompatible neovessels. Thus, biological decellularized scaffolds could provide natural tissue architecture to use in tissue engineering, when the absence of ideal autologous veins reduces surgical options. The goal of this study was to evaluate different chemical induced decellularization protocols of the inferior vena cava of rabbits. They were decellularized with Triton X100 (TX100), sodium dodecyl sulfate (SDS) or sodium deoxycholate (DS). Afterwards, we assessed the remaining extracellular matrix (ECM) integrity, residual toxicity and the biomechanical resistance of the scaffolds. Our results showed that TX100 was not effective to remove the cells, while protocols using SDS 1% for 2h and DS 2% for 1h, efficiently removed the cells and were better characterized. These scaffolds preserved the original organization of ECM. In addition, the residual toxicity assessment did not reveal statistically significant changes while decellularized scaffolds retained the equivalent biomechanical properties when compared with the control. Our results concluded that protocols using SDS and DS were effective at obtaining decellularized scaffolds, which may be useful for blood vessel tissue engineering.


Assuntos
Tensoativos/farmacologia , Engenharia Tecidual , Alicerces Teciduais , Transplante de Tecidos , Veia Cava Inferior/citologia , Veia Cava Inferior/fisiologia , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fenômenos Biomecânicos , Diferenciação Celular , Células Cultivadas , Matriz Extracelular/química , Feminino , Técnicas Imunoenzimáticas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Coelhos , Veia Cava Inferior/efeitos dos fármacos
10.
Biomedicines ; 12(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38398024

RESUMO

The molecular processes linked to the development and progression of Crohn's disease (CD) and ulcerative colitis (UC) are not completely understood. MicroRNAs (miRNAs) regulate gene expression and are indicated as diagnostic, prognostic, and predictive biomarkers in chronic degenerative diseases. Our objectives included the identification of global miRNA expression in CD and UC, as well as miRNA target genes, miRNA-mRNA interaction networks, and biological functions associated with these different forms of inflammatory bowel disease (IBD). METHODS: By performing a comprehensive meta-analysis, we integrated miRNA expression data from nine studies in IBD. We obtained detailed information on significantly deregulated miRNAs (fold change, FC ≥ 2 and p < 0.05), sample type and number, and platform applied for analysis in the training and validation sets. Further bioinformatic analyses were performed to identify miRNA target genes, by using the microRNA Data Integration Portal tool. We also sought to identify statistically enriched pathways of genes regulated by miRNAs using ToppGene Suite. Additional analyses were performed to filter for genes expressed in intestinal tissue using the European Bioinformatics Institute (EBI) database. RESULTS: Our findings showed the upregulation of 15 miRNAs in CD and 33 in UC. Conversely, six miRNAs were downregulated in CD, while seven were downregulated in UC. These results indicate a greater deregulation of miRNAs in UC compared to CD. Of note, miRNA target genes were enriched for immune system regulation pathways. Among significantly deregulated miRNAs with a higher number of miRNA-target gene interactions, we identified miR-199a-5p and miR-362-3p altered in CD, while among UC case patients, miRNA-target gene interactions were higher for miR-155-5p. CONCLUSIONS: The identified miRNAs play roles in regulating genes associated with immune system regulation and inflammation in IBD. Such miRNAs and their target genes have the potential to serve as clinically relevant biomarkers. These findings hold promise for enhancing the accuracy of diagnoses and facilitating the development of personalized treatment strategies for individuals with various forms of IBD.

11.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174717

RESUMO

Management of advanced melanoma remains challenging, with most BRAF (B-Raf proto-oncogene, serine/threonine kinase)-mutated metastatic patients relapsing within a few months upon MAPK inhibitors treatment. Modulation of tumor-derived extracellular vesicle (EVs) cargo with enrichment of antitumoral molecules is a promising strategy to impair tumor progression and increase treatment response. Herein, we report that restored expression of miR-195-5p, down-regulated in melanoma favoring drug resistance, increases the release of EVs enriched in the tumor suppressor miRNAs, miR-195-5p, miR-152-3p, and miR-202-3p. Incorporating these EVs by bystander tumor cells resulted in decreased proliferation and viability, accompanied by a reduction in CCND1 and YAP1 mRNA levels. Upon treatment with MAPK inhibitors, miR-195 EVs significantly decreased BCL2-L1 protein levels and increased cell death ratio and treatment efficacy. Additionally, EVs exogenously loaded with miR-195-5p by electroporation reduced tumor volume in vivo and impaired engraftment and growth of xenografts implanted with melanoma cells exposed to MAPK inhibitors. Our study shows that miR-195-5p antitumoral activity can be spread to bystander cells through EVs, improving melanoma response to targeted therapy and revealing a promising EV-based strategy to increase clinical response in patients harboring BRAF mutations.


Assuntos
Vesículas Extracelulares , Melanoma , MicroRNAs , Humanos , Proteínas Proto-Oncogênicas B-raf , Recidiva Local de Neoplasia/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Vesículas Extracelulares/metabolismo
12.
Cancers (Basel) ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760494

RESUMO

Lung tumors frequently metastasize to the brain. Brain metastasis (BM) is common in advanced cases, and a major cause of patient morbidity and mortality. The precise molecular mechanisms governing BM are still unclear, in part attributed to the rarity of BM specimens. In this work, we compile a unique transcriptomic dataset encompassing RNA-seq, microarray, and single-cell analyses from BM samples obtained from patients with lung adenocarcinoma (LUAD). By integrating this comprehensive dataset, we aimed to enhance understanding of the molecular landscape of BM, thereby facilitating the identification of novel and efficient treatment strategies. We identified 102 genes with significantly deregulated expression levels in BM tissues, and discovered transcriptional alterations affecting the key driver 'hub' genes CD69 (a type II C-lectin receptor) and GZMA (Granzyme A), indicating an important role of the immune system in the development of BM from primary LUAD. Our study demonstrated a BM-specific gene expression pattern and revealed the presence of dendritic cells and neutrophils in BM, suggesting an immunosuppressive tumor microenvironment. These findings highlight key drivers of LUAD-BM that may yield therapeutic targets to improve patient outcomes.

13.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190212

RESUMO

Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers, which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent developments have established liquid biopsies as promising non-invasive methods for detecting biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing technologies and bioinformatics tools, new approaches for biomarker discovery have emerged. In this article, we survey established and emerging biomarker discovery methods using nucleic acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers and describe how these have been applied to liquid biopsy. We highlight emerging biomarker discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as recently developed software tailored for liquid biopsy biomarker detection, which holds promise for early diagnosis of lung cancer.

14.
Noncoding RNA ; 9(6)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37987361

RESUMO

Deregulated miRNAs are associated with colorectal cancer (CRC), with alterations depending on the tumor location. Novel tissue-specific miRNAs have been identified in different tumors and are associated with cancer. We used miRMaster to identify novel miRNAs in CRC from the TCGA and GEO data (discovery and validation groups). We used TCGA data from five tissues to analyze miRNA tissue specificity. miRDB was used to predict miRNA targets, and the UCSC Xena Browser was used to evaluate target expression. After successive analyses, we identified 15 novel miRNAs with the same expression patterns in CRC in both the discovery and validation groups. Four molecules (nov-miR-13844-5p, nov-miR-7154-5p, nov-miR-5035-3p, and nov-miR-590-5p) were differentially expressed in proximal and distal CRC. The nov-miR-3345-5p and nov-miR-13172-3p, which are upregulated in tumors, are only expressed in colorectal tissues. These molecules have been linked to a worse prognosis in right-sided colon and rectal carcinomas. An analysis revealed an association between eight novel miRNAs and 81 targets, mostly cancer-related genes, with varying expression based on tumor location. These findings provide new miRNAs with potential biological relevance, molecular biomarkers, and therapeutic targets for CRC treatment.

15.
Cells ; 12(24)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132121

RESUMO

In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Microbiota , Humanos , Células Estromais , Microambiente Tumoral
16.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36765679

RESUMO

Lung cancer is one of the most frequent tumors that metastasize to the brain. Brain metastasis (BM) is common in advanced cases, being the major cause of patient morbidity and mortality. BMs are thought to arise via the seeding of circulating tumor cells into the brain microvasculature. In brain tissue, the interaction with immune cells promotes a microenvironment favorable to the growth of cancer cells. Despite multimodal treatments and advances in systemic therapies, lung cancer patients still have poor prognoses. Therefore, there is an urgent need to identify the molecular drivers of BM and clinically applicable biomarkers in order to improve disease outcomes and patient survival. The goal of this review is to summarize the current state of knowledge on the mechanisms of the metastatic spread of lung cancer to the brain and how the metastatic spread is influenced by the brain microenvironment, and to elucidate the molecular determinants of brain metastasis regarding the role of genomic and transcriptomic changes, including coding and non-coding RNAs. We also present an overview of the current therapeutics and novel treatment strategies for patients diagnosed with BM from NSCLC.

17.
Arch Gerontol Geriatr ; 106: 104870, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36442406

RESUMO

BACKGROUND: Frailty and ST-Elevation Myocardial Infarction (STEMI) share similar molecular pathways. Specific biomarkers, such as microRNAs (miRNAs), may provide insights into the molecular mechanisms that cause the relationship between frailty and STEMI. OBJECTIVE: Our aim was to identify and compare circulating miRNA levels between frail and non-frail older adults following STEMI and comprehend the regulatory miRNA-gene networks and pathways involved in this condition. METHODS: This exploratory study is a subanalysis of a larger observational study. In this study, we selected patients ≥ 65 years old, following STEMI, with pre-frail/frail (n=5) and non-frail (n=4) phenotype evaluated using the Clinical Frailty Scale and serum circulating miRNA levels were analyzed. RESULTS: Pre-frail/frail patients had greater serum levels of 53 miRNAs, compared with non-frail patients. Notably, miR-103a-3p, miR-598-3p, and miR-130a-3p were the top three significantly deregulated miRNAs predicted to modulate gene expression associated with aging. Additional computational analyses showed 7,420 predicted miRNA gene targets, which were regulated by at least two of the 53 identified miRNAs. Pathway enrichment analysis showed that axon guidance and MAPK signaling were among pathways regulated by miRNA target genes. CONCLUSIONS: These novel findings suggest a correlation between the identified miRNAs, target genes, and pathways in pre-frail and frail patients with myocardial infarction.


Assuntos
MicroRNA Circulante , Fragilidade , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , MicroRNA Circulante/sangue , MicroRNA Circulante/metabolismo , Fragilidade/sangue , Fragilidade/diagnóstico , Fragilidade/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Redes e Vias Metabólicas
18.
J Nutr Biochem ; 112: 109203, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36347450

RESUMO

The objective of this study was to assess whether acute green tea (GT) supplementation attenuates inflammatory and oxidative stress biomarkers induced by high-fat, high-saturated (HFHS) meals in obese women, and to assess its ability to modulate circulating microRNA (miRNA) expression. This was a randomized, double-blind, crossover study. The study included obese women over 18 years old who had no comorbidities. In the first moment, patients were instructed to take 2 capsules of placebo or GT (738 mg) at 10:00 p.m. and to fast overnight. The next morning, a blood sample was collected, and an HFHS meal was offered to the patients. Another blood sample was collected 5 hours after the meal. In the second moment, patients who received placebo in the first moment now received the GT and vice-versa. Serum inflammatory and oxidative stress biomarkers were measured, and circulating levels of miRNA were evaluated. Fifteen women with mean age of 35.5±9.9 years were included in the final analysis. There was no difference regarding inflammatory and oxidative stress biomarkers. However, patients who consumed GT had lower circulating expression of 62 miRNAs compared with patients who did not consume GT. Predictive analysis of target genes showed 1,757 targets regulated by the 62 miRNAs. Notably, 5 miRNAs (miR-1297, miR-192-5p, miR-373-3p, miR-595 and miR-1266-5p) regulate genes associated with TGF-beta, CARM1, RSK, and BMP pathways. Our study showed that GT inhibited the expression of miRNAs induced by HFHS meal intake. These results shed light on the mechanisms involved in the beneficial effects of GT ingestion.


Assuntos
MicroRNA Circulante , MicroRNAs , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , MicroRNA Circulante/genética , Estudos Cross-Over , Chá , MicroRNAs/metabolismo , Obesidade , Biomarcadores
19.
EMBO Rep ; 11(10): 777-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20829881

RESUMO

ΔNp63α is a critical pro-survival protein overexpressed in 80% of head and neck squamous cell carcinomas (HNSCCs) where it inhibits TAp73ß transcription of p53-family target genes, which is thought to increase HNSCC resistance to chemotherapy-induced cell death. However, the mechanisms governing ΔNp63α function are largely unknown. In this study, we identify special AT-rich-binding protein 2 (SATB2) as a new ΔNp63α-binding protein that is preferentially expressed in advanced-stage primary HNSCC and show that SATB2 promotes chemoresistance by enhancing ΔNp63α-mediated transrepression by augmenting ΔNp63α engagement to p53-family responsive elements. Furthermore, SATB2 expression positively correlates with HNSCC chemoresistance, and RNA interference-mediated knockdown of endogenous SATB2 re-sensitizes HNSCC cells to chemotherapy- and γ-irradiation-induced apoptosis, irrespective of p53 status. These findings unveil SATB2 as a pivotal modulator of ΔNp63α that governs HNSCC cell survival.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Genes p53 , Humanos , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
20.
Front Genet ; 13: 910221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664333

RESUMO

Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA