Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2311116121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683977

RESUMO

Conventionally, women are perceived to feel colder than men, but controlled comparisons are sparse. We measured the response of healthy, lean, young women and men to a range of ambient temperatures typical of the daily environment (17 to 31 °C). The Scholander model of thermoregulation defines the lower critical temperature as threshold of the thermoneutral zone, below which additional heat production is required to defend core body temperature. This parameter can be used to characterize the thermoregulatory phenotypes of endotherms on a spectrum from "arctic" to "tropical." We found that women had a cooler lower critical temperature (mean ± SD: 21.9 ± 1.3 °C vs. 22.9 ± 1.2 °C, P = 0.047), resembling an "arctic" shift compared to men. The more arctic profile of women was predominantly driven by higher insulation associated with more body fat compared to men, countering the lower basal metabolic rate associated with their smaller body size, which typically favors a "tropical" shift. We did not detect sex-based differences in secondary measures of thermoregulation including brown adipose tissue glucose uptake, muscle electrical activity, skin temperatures, cold-induced thermogenesis, or self-reported thermal comfort. In conclusion, the principal contributors to individual differences in human thermoregulation are physical attributes, including body size and composition, which may be partly mediated by sex.


Assuntos
Regulação da Temperatura Corporal , Humanos , Feminino , Masculino , Regulação da Temperatura Corporal/fisiologia , Adulto , Regiões Árticas , Adulto Jovem , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Caracteres Sexuais , Fatores Sexuais , Temperatura Corporal/fisiologia , Termogênese/fisiologia , Metabolismo Basal/fisiologia
2.
Purinergic Signal ; 19(3): 551-564, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36781825

RESUMO

Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.


Assuntos
Adenosina , Hipotermia , Camundongos , Animais , Adenosina/farmacologia , Hipotermia/induzido quimicamente , Nimodipina/efeitos adversos , Receptores Purinérgicos P1 , Dipiridamol/efeitos adversos
3.
PLoS Biol ; 17(3): e3000161, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30822301

RESUMO

Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1-/-;Adora2a-/-;Adora2b-/-;Adora3-/- (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature. The QKO mice demonstrate that ARs are not required for growth, metabolism, breeding, and body temperature regulation (diurnal variation, response to stress, and torpor). However, the mice showed decreased survival starting at about 15 weeks of age. While adenosine agonists cause profound hypothermia via each AR, adenosine did not cause hypothermia (or bradycardia or hypotension) in QKO mice, indicating that AR-independent signals do not contribute to adenosine-induced hypothermia. The hypothermia elicited by adenosine kinase inhibition (with A134974), inosine, or uridine also required ARs, as each was abolished in the QKO mice. The proposed mechanism for uridine-induced hypothermia is inhibition of adenosine transport by uridine, increasing local extracellular adenosine levels. In contrast, adenosine 5'-monophosphate (AMP)-induced hypothermia was attenuated in QKO mice, demonstrating roles for both AR-dependent and AR-independent mechanisms in this process. The physiology of the QKO mice appears to be the sum of the individual knockout mice, without clear evidence for synergy, indicating that the actions of the four ARs are generally complementary. The phenotype of the QKO mice suggests that, while extracellular adenosine is a signal of stress, damage, and/or danger, it is less important for baseline regulation of body temperature.


Assuntos
Hipotermia/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Animais , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Cafeína/farmacologia , Feminino , Genótipo , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Hipotermia/induzido quimicamente , Hipotermia/genética , Inosina/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Receptor A1 de Adenosina/genética , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Receptor A3 de Adenosina/genética , Uridina/toxicidade
4.
Am J Physiol Endocrinol Metab ; 319(2): E438-E446, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32691633

RESUMO

Understanding mouse thermal physiology informs the usefulness of mice as models of human disease. It is widely assumed that the mouse tail contributes greatly to heat loss (as it does in rat), but this has not been quantitated. We studied C57BL/6J mice after tail amputation. Tailless mice housed at 22°C did not differ from littermate controls in body weight, lean or fat content, or energy expenditure. With acute changes in ambient temperature from 19 to 39°C, tailless and control mice demonstrated similar body temperatures (Tb), metabolic rates, and heat conductances and no difference in thermoneutral point. Treatment with prazosin, an α1-adrenergic antagonist and vasodilator, increased tail temperature in control mice by up to 4.8 ± 0.8°C. Comparing prazosin treatment in tailless and control mice suggested that the tail's contribution to total heat loss was a nonsignificant 3.4%. Major heat stress produced by treatment at 30°C with CL316243, a ß3-adrenergic agonist, increased metabolic rate and Tb and, at a matched increase in metabolic rate, the tailless mice showed a 0.72 ± 0.14°C greater Tb increase and 7.6% lower whole body heat conductance. Thus, the mouse tail is a useful biomarker of vasodilation and thermoregulation, but in our experiments contributes only 5-8% of whole body heat dissipation, less than the 17% reported for rat. Heat dissipation through the tail is important under extreme scenarios such as pharmacological activation of brown adipose tissue; however, non-tail contributions to heat loss may have been underestimated in the mouse.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Modelos Animais , Cauda/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1 , Amputação Cirúrgica , Animais , Composição Corporal/fisiologia , Superfície Corporal , Regulação da Temperatura Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Resposta ao Choque Térmico , Camundongos , Camundongos Endogâmicos C57BL , Prazosina/farmacologia , Ratos , Cauda/cirurgia , Vasodilatação/fisiologia
5.
Am J Physiol Endocrinol Metab ; 315(3): E357-E366, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29812984

RESUMO

Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in KitW-sh/W-sh mice, which lack mast cells, demonstrating that mast cells are required. MRGPRB2 is a receptor that detects many cationic molecules and activates mast cells in an antigen-independent manner. In vitro, MTII stimulated mast cells by both MRGPRB2-dependent and -independent mechanisms, and MTII-induced hypothermia was intact in MRGPRB2-null mice. Confirming that MTII activated mast cells, MTII treatment increased plasma histamine levels in both wild-type and MRGPRB2-null, but not in KitW-sh/W-sh, mice. The released histamine produced hypothermia via histamine H1 receptors because either a selective antagonist, pyrilamine, or ablation of H1 receptors greatly diminished the hypothermia. Other drugs, including compound 48/80, a commonly used mast cell activator, also produced hypothermia by both mast cell-dependent and -independent mechanisms. These results suggest that mast cell activation should be considered when investigating the mechanism of drug-induced hypothermia in mice.


Assuntos
Agonistas dos Receptores Histamínicos/farmacologia , Hipotermia/induzido quimicamente , Mastócitos/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , alfa-MSH/análogos & derivados , Animais , Liberação de Histamina/efeitos dos fármacos , Liberação de Histamina/genética , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/farmacologia
6.
Am J Hum Genet ; 92(5): 827-34, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23643386

RESUMO

The amount of weight loss attained after Roux-en-Y gastric bypass (RYGB) surgery follows a wide and normal distribution, and recent evidence indicates that this weight loss is due to physiological, rather than mechanical, mechanisms. To identify potential genetic factors associated with weight loss after RYGB, we performed a genome-wide association study (GWAS) of 693 individuals undergoing RYGB and then replicated this analysis in an independent population of 327 individuals undergoing RYGB. We found that a 15q26.1 locus near ST8SIA2 and SLCO3A1 was significantly associated with weight loss after RYGB. Expression of ST8SIA2 in omental fat of these individuals at baseline was significantly associated with weight loss after RYGB. Gene expression analysis in RYGB and weight-matched, sham-operated (WMS) mice revealed that expression of St8sia2 and Slco3a1 was significantly altered in metabolically active tissues in RYGB-treated compared to WMS mice. These findings provide strong evidence for specific genetic influences on weight loss after RYGB and underscore the biological nature of the response to RYGB.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Derivação Gástrica , Sialiltransferases/genética , Redução de Peso/genética , Animais , Aquaporinas/genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Camundongos , Transportadores de Ânions Orgânicos/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Am J Physiol Heart Circ Physiol ; 310(7): H891-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801314

RESUMO

Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged. During physical activity, the heart rate and blood pressure increased more in Brs3 null mice, reaching a similar heart rate and higher mean arterial pressure than control mice. When sympathetic input was blocked with propranolol, the heart rate of Brs3 null mice was unchanged, while the heart rate in control mice was reduced to the level of the null mice. The intrinsic heart rate, measured after both sympathetic and parasympathetic blockade, was similar in Brs3 null and control mice. Intravenous infusion of the BRS-3 agonist MK-5046 increased mean arterial pressure and heart rate in wild-type but not in Brs3 null mice, and this increase was blocked by pretreatment with clonidine, a sympatholytic, centrally acting α2-adrenergic agonist. In anesthetized mice, hypothalamic infusion of MK-5046 also increased both mean arterial pressure and heart rate. Taken together, these data demonstrate that BRS-3 contributes to resting cardiac sympathetic tone, but is not required for activity-induced increases in heart rate and blood pressure. The data suggest that BRS-3 activation increases heart rate and blood pressure via a central sympathetic mechanism.


Assuntos
Pressão Sanguínea , Frequência Cardíaca , Receptores da Bombesina/metabolismo , Sistema Nervoso Simpático/fisiologia , Adrenérgicos/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Bombesina/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
8.
J Pharmacol Exp Ther ; 356(2): 474-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26606937

RESUMO

Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist-induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non-brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia.


Assuntos
Hipotermia/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Histamínicos H1/metabolismo , Agonistas do Receptor A3 de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Hipotermia/induzido quimicamente , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
J Biol Chem ; 289(28): 19341-50, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872412

RESUMO

The chemical uncoupler 2,4-dinitrophenol (DNP) was an effective and widely used weight loss drug in the early 1930s. However, the physiology of DNP has not been studied in detail because toxicity, including hyperthermia and death, reduced interest in the clinical use of chemical uncouplers. To investigate DNP action, mice fed a high fat diet and housed at 30 °C (to minimize facultative thermogenesis) were treated with 800 mg/liter DNP in drinking water. DNP treatment increased energy expenditure by ∼ 17%, but did not change food intake. DNP-treated mice weighed 26% less than controls after 2 months of treatment due to decreased fat mass, without a change in lean mass. DNP improved glucose tolerance and reduced hepatic steatosis without observed toxicity. DNP treatment also reduced circulating T3 and T4 levels, Ucp1 expression, and brown adipose tissue activity, demonstrating that DNP-mediated heat generation substituted for brown adipose tissue thermogenesis. At 22 °C, a typical vivarium temperature that is below thermoneutrality, DNP treatment had no effect on body weight, adiposity, or glucose homeostasis. Thus, environmental temperature should be considered when assessing an anti-obesity drug in mice, particularly agents acting on energy expenditure. Furthermore, the beneficial effects of DNP suggest that chemical uncouplers deserve further investigation for the treatment of obesity and its comorbidities.


Assuntos
2,4-Dinitrofenol/farmacologia , Adiposidade/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Dieta/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Desacopladores/farmacologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Canais Iônicos/biossíntese , Camundongos , Proteínas Mitocondriais/biossíntese , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Proteína Desacopladora 1
11.
Am J Physiol Endocrinol Metab ; 306(6): E681-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24452453

RESUMO

Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and ß3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Temperatura Corporal , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores da Bombesina/metabolismo , Sistema Nervoso Simpático/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/inervação , Agonistas de Receptores Adrenérgicos beta 3/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Resposta ao Choque Frio/efeitos dos fármacos , Cruzamentos Genéticos , Dioxóis/administração & dosagem , Dioxóis/farmacologia , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Infusões Intravenosas , Infusões Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Receptores da Bombesina/agonistas , Receptores da Bombesina/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/efeitos dos fármacos
13.
Genome Res ; 21(7): 1008-16, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602305

RESUMO

To map the genetics of gene expression in metabolically relevant tissues and investigate the diversity of expression SNPs (eSNPs) in multiple tissues from the same individual, we collected four tissues from approximately 1000 patients undergoing Roux-en-Y gastric bypass (RYGB) and clinical traits associated with their weight loss and co-morbidities. We then performed high-throughput genotyping and gene expression profiling and carried out a genome-wide association analyses for more than 100,000 gene expression traits representing four metabolically relevant tissues: liver, omental adipose, subcutaneous adipose, and stomach. We successfully identified 24,531 eSNPs corresponding to about 10,000 distinct genes. This represents the greatest number of eSNPs identified to our knowledge by any study to date and the first study to identify eSNPs from stomach tissue. We then demonstrate how these eSNPs provide a high-quality disease map for each tissue in morbidly obese patients to not only inform genetic associations identified in this cohort, but in previously published genome-wide association studies as well. These data can aid in elucidating the key networks associated with morbid obesity, response to RYGB, and disease as a whole.


Assuntos
Mucosa Gástrica/metabolismo , Fígado/metabolismo , Obesidade Mórbida/epidemiologia , Obesidade Mórbida/genética , Adiposidade/genética , Adulto , Estudos de Coortes , Comorbidade , Bases de Dados Genéticas , Feminino , Derivação Gástrica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Polimorfismo de Nucleotídeo Único , Redução de Peso
14.
Nat Methods ; 9(1): 57-63, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22205519

RESUMO

We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).


Assuntos
Ingestão de Energia , Metabolismo Energético , Camundongos/fisiologia , Animais , Composição Corporal , Meio Ambiente , Abrigo para Animais , Camundongos Mutantes/genética , Obesidade/etiologia , Fenótipo
15.
Nature ; 452(7186): 423-8, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18344981

RESUMO

Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Obesidade/genética , Tecido Adiposo/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sangue/metabolismo , Índice de Massa Corporal , Estudos de Coortes , Feminino , Genoma Humano , Humanos , Islândia , Escore Lod , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Tamanho da Amostra , Relação Cintura-Quadril , População Branca/genética
16.
Mol Metab ; 84: 101946, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657735

RESUMO

Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Metabolismo Energético , Fotoperíodo , Ritmo Ultradiano , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Sono/fisiologia , Ritmo Ultradiano/fisiologia , Vigília/fisiologia
17.
J Pharmacol Exp Ther ; 347(1): 100-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892571

RESUMO

Bombesin-receptor-subtype-3 (BRS-3) is an orphan G-protein-coupled receptor of the bombesin (Bn) family whose natural ligand is unknown and which does not bind any natural Bn-peptide with high affinity. It is present in the central nervous system, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology is largely unknown because of the lack of selective ligands. Recently, MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-{[1-(trifluoromethyl)cyclopropyl]methyl}-1H-imidazol-2-yl)propan-2-ol] and Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate], a nonpeptide agonist and a peptide antagonist, respectively, for BRS-3 have been described, but there have been limited studies on their pharmacology. We studied MK-5046 and Bantag-1 interactions with human Bn-receptors-human bombesin receptor subtype-3 (hBRS-3), gastrin-releasing peptide receptor (GRP-R), and neuromedin B receptor (NMB-R)-and compared them with the nonselective, peptide-agonist [d-Tyr6,ßAla11,Phe13,Nle14]Bn-(6-14) (peptide #1). Receptor activation was detected by activation of phospholipase C (PLC), mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK), paxillin, and Akt. In hBRS-3 cells, the relative affinities were Bantag-1 (1.3 nM) > peptide #1 (2 nM) > MK-5046 (37-160 nM) > GRP, NMB (>10 µM), and the binding-dose-inhibition curves were broad (>4 logs), with Hill coefficients differing significantly from unity. Curve-fitting demonstrated high-affinity (MK-5046, Ki = 0.08 nM) and low-affinity (MK-5046, Ki = 11-29 nM) binding sites. For PLC activation in hBRS-3 cells, the relative potencies were MK-5046 (0.02 nM) > peptide #1 (6 nM) > GRP, NMB, Bantag-1 (>10 µM), and MK-5046 had a biphasic dose response, whereas peptide #1 was monophasic. Bantag-1 was a specific hBRS-3-antagonist. In hBRS-3 cells, MK-5046 was a full agonist for activation of MAPK, FAK, Akt, and paxillin; however, it was a partial agonist for phospholipase A2 (PLA2) activation. The kinetics of activation/duration of action for PLC/MAPK activation of MK-5046 and peptide #1 differed, with peptide #1 causing more rapid stimulation; however, MK-5046 had more prolonged activity. Our study finds that MK-5046 and Bantag-1 have high affinity/selectivity for hBRS-3. The nonpeptide MK-5046 and peptide #1 agonists differ markedly in their receptor coupling, ability to activate different signaling cascades, and kinetics/duration of action. These results show that their hBRS-3 receptor activation is not always concordant and could lead to markedly different cellular responses.


Assuntos
Imidazóis/farmacologia , Pirazóis/farmacologia , Receptores da Bombesina/agonistas , Receptores da Bombesina/antagonistas & inibidores , Células 3T3 , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Imidazóis/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Pirazóis/metabolismo , Receptores da Bombesina/metabolismo
18.
PLoS One ; 18(10): e0292610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37812612

RESUMO

OBJECTIVE: Otopetrin 1 (OTOP1) is a proton channel that is highly expressed in brown adipose tissue. We examined the physiology of Otop1-/- mice, which lack functional OTOP1. METHODS: Mice were studied by indirect calorimetry and telemetric ambulatory body temperature monitoring. Mitochondrial function was measured as oxygen consumption and extracellular acidification. RESULTS: Otop1-/- mice had similar body temperatures as control mice at baseline and in response to cold and hot ambient temperatures. However, in response to fasting the Otop1-/- mice exhibited an exaggerated hypothermia and hypometabolism. Similarly, in ex vivo tests of Otop1-/- brown adipose tissue mitochondrial function, there was no change in baseline oxygen consumption, but the oxygen consumption was reduced after maximal uncoupling with FCCP and increased upon stimulation with the ß3-adrenergic agonist CL316243. Mast cells also express Otop1, and Otop1-/- mice had intact, possibly greater hypothermia in response to mast cell activation by the adenosine A3 receptor agonist MRS5698. No increase in insulin resistance was observed in the Otop1-/- mice. CONCLUSIONS: Loss of OTOP1 does not change basal function of brown adipose tissue but affects stimulated responses.


Assuntos
Hipotermia , Animais , Camundongos , Tecido Adiposo Marrom , Temperatura Corporal , Regulação da Temperatura Corporal , Jejum , Camundongos Knockout
19.
Mol Metab ; 71: 101699, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858190

RESUMO

OBJECTIVE: Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity. METHODS: Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient. RESULTS: We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake. Incorporating body temperature into human basal metabolic rate measurements significantly reduced the inter-individual variation. CONCLUSIONS: The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.


Assuntos
Metabolismo Basal , Metabolismo Energético , Humanos , Animais , Camundongos , Metabolismo Energético/fisiologia , Peso Corporal/fisiologia , Metabolismo Basal/fisiologia , Obesidade , Termogênese/fisiologia
20.
Bioorg Med Chem ; 20(9): 2845-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22494842

RESUMO

Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor expressed primarily in the hypothalamus which plays a role in the onset of both diabetes and obesity. We report herein our progress made towards identifying a potent, selective bombesin receptor subtype-3 (BRS-3) agonist related to the previously described MK-7725(1) Chobanian et al. (2012) that would prevent atropisomerization through the increase of steric bulk at the C-2 position. This would thereby make clinical development of this class of compounds more cost effective by inhibiting racemization which can occur over long periods of time at room/elevated temperature.


Assuntos
Benzodiazepinas/química , Desenho de Fármacos , Receptores da Bombesina/agonistas , Sulfonamidas/química , Sulfonamidas/síntese química , Animais , Humanos , Camundongos , Ligação Proteica , Ratos , Receptores da Bombesina/metabolismo , Estereoisomerismo , Sulfonamidas/farmacocinética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA