Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Neurobiol Dis ; 199: 106572, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901782

RESUMO

Within the adult mouse subventricular zone (SVZ), neural stem cells (NSCs) produce neuroblasts and oligodendrocyte precursor cells (OPCs). T3, the active thyroid hormone, influences renewal and commitment of SVZ progenitors. However, how regulators of T3 availability affect these processes is less understood. Using Mct8/Dio2 knockout mice, we investigated the role of MCT8, a TH transporter, and DIO2, the T3-generating enzyme, in regulating adult SVZ-neurogliogenesis. Single-cell RNA-Seq revealed Mct8 expression in various SVZ cell types in WT mice, while Dio2 was enriched in neurons, astrocytes, and quiescent NSCs. The absence of both regulators in the knockout model dysregulated gene expression, increased the neuroblast/OPC ratio and hindered OPC differentiation. Immunostainings demonstrated compromised neuroblast migration reducing their supply to the olfactory bulbs, impairing interneuron differentiation and odor discrimination. These findings underscore the pivotal roles of MCT8 and DIO2 in neuro- and oligodendrogenesis, offering targets for therapeutic avenues in neurodegenerative and demyelinating diseases.

2.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354186

RESUMO

The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood-brain and blood-placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.


Assuntos
Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Hormônios Tireóideos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Descoberta de Drogas , Disruptores Endócrinos/química , Humanos , Técnicas In Vitro , Internet
3.
Front Endocrinol (Lausanne) ; 15: 1347802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516412

RESUMO

Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.


Assuntos
Encéfalo , Neurogênese , Humanos , Adulto , Animais , Neurogênese/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia , Hormônios Tireóideos/fisiologia , Mamíferos
4.
Stem Cell Reports ; 18(2): 534-554, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36669492

RESUMO

The adult rodent subventricular zone (SVZ) generates neural stem cells (NSCs) throughout life that migrate to the olfactory bulbs (OBs) and differentiate into olfactory interneurons. Few SVZ NSCs generate oligodendrocyte precursor cells (OPCs). We investigated how neurogliogenesis is regulated during aging in mice and in a non-human primate (NHP) model, the gray mouse lemur. In both species, neuronal commitment decreased with age, while OPC generation and myelin content unexpectedly increased. In the OBs, more tyrosine hydroxylase interneurons in old mice, but fewer in lemurs, marked a surprising interspecies difference that could relate to our observation of a continuous ventricle in lemurs. In the corpus callosum, aging promoted maturation of OPCs into mature oligodendrocytes in mice but blocked it in lemurs. The present study highlights similarities and dissimilarities between rodents and NHPs, revealing that NHPs are a more relevant model than mice to study the evolution of biomarkers of aging.


Assuntos
Cheirogaleidae , Lemur , Células-Tronco Neurais , Animais , Ventrículos Laterais , Bainha de Mielina , Células-Tronco Neurais/fisiologia , Oligodendroglia/fisiologia , Diferenciação Celular/fisiologia
5.
Environ Int ; 172: 107770, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36706583

RESUMO

Neural stem cells in the murine subventricular zone (SVZ) reactivate during postnatal development to generate neurons and glia throughout adulthood. We previously demonstrated that a postnatal thyroid hormone (TH) peak orchestrates this remodelling, rendering this process vulnerable to endocrine disruption. We exposed mice to 2 or 200 µg/kg bw/day of the bisphenol A-replacement and suspected TH-disruptor bisphenol F (BPF) in the drinking water, from embryonic day 15 to postnatal day 21 (P21). In parallel, one group was exposed to the TH-synthesis blocker propylthiouracil (0.15 % PTU). In contrast to PTU, BPF exposure did not affect serum TH levels at P15, P21 or P60. RNA-seq on dissected SVZs at P15 revealed dysregulated neurodevelopmental genes in all treatments, although few overlapped amongst the conditions. We then investigated the phenotype at P60 to analyse long-term consequences of transient developmental exposure. As opposed to hypothyroid conditions, and despite dysregulated oligodendrogenesis-promoting genes in the P15 SVZ exposed to the highest dose of BPF, immunostainings for myelin and OLIG2/CC1 showed no impact on global myelin content nor oligodendrocyte maturation in the P60 corpus callosum, apart from a reduced thickness. The highest dose did reduce numbers of newly generated SVZ-neuroblasts with 22 %. Related to this were behavioural alterations. P60 mice previously exposed to the highest BPF dose memorized an odour less well than control animals did, although they performed better than PTU-exposed animals. All mice could discriminate new odours, but all exposed groups showed less interest in social odours. Our data indicate that perinatal exposure to low doses of BPF disrupts postnatal murine SVZ remodelling, and lowers the adult neuron/oligodendroglia output, even after exposure had been absent for 40 days. These anomalies warrant further investigation on the potential harm of alternative bisphenol compounds for human foetal brain development.


Assuntos
Células-Tronco Neurais , Gravidez , Feminino , Animais , Camundongos , Adulto , Humanos , Neurônios , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Hormônios Tireóideos
6.
Stem Cell Reports ; 17(3): 459-474, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35120623

RESUMO

Neural stem cells (NSCs) in the adult brain are a source of neural cells for brain injury repair. We investigated whether their capacity to generate new neurons and glia is determined by thyroid hormone (TH) during development because serum levels peak during postnatal reorganization of the main NSC niche, the subventricular zone (SVZ). Re-analysis of mouse transcriptome data revealed increased expression of TH transporters and deiodinases in postnatal SVZ NSCs, promoting local TH action, concomitant with a burst in neurogenesis. Inducing developmental hypothyroidism reduced NSC proliferation, disrupted expression of genes implicated in NSC determination and TH signaling, and altered the neuron/glia output in newborns. Three-month-old adult mice recovering from developmental hypothyroidism had fewer olfactory interneurons and underperformed on short-memory odor tests, dependent on SVZ neurogenesis. Our data provide readouts permitting comparison with adverse long-term events following thyroid disruptor exposure and ideas regarding the etiology of prevalent neurodegenerative diseases in industrialized countries.


Assuntos
Hipotireoidismo , Ventrículos Laterais , Animais , Diferenciação Celular , Hipotireoidismo/metabolismo , Ventrículos Laterais/metabolismo , Camundongos , Neurogênese/genética , Neuroglia/metabolismo , Hormônios Tireóideos/metabolismo
7.
Vitam Horm ; 116: 133-192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33752817

RESUMO

Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.


Assuntos
Células-Tronco Neurais , Roedores , Animais , Camundongos , Neurogênese/fisiologia , Filogenia , Primatas/metabolismo , Roedores/metabolismo , Hormônios Tireóideos/fisiologia
8.
Stem Cell Reports ; 16(2): 337-353, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33450189

RESUMO

Adult neural stem cell (NSC) generation in vertebrate brains requires thyroid hormones (THs). How THs enter the NSC population is unknown, although TH availability determines proliferation and neuronal versus glial progenitor determination in murine subventricular zone (SVZ) NSCs. Mice display neurological signs of the severely disabling human disease, Allan-Herndon-Dudley syndrome, if they lack both MCT8 and OATP1C1 transporters, or MCT8 and deiodinase type 2. We analyzed the distribution of MCT8 and OATP1C1 in adult mouse SVZ. Both are strongly expressed in NSCs and at a lower level in neuronal cell precursors but not in oligodendrocyte progenitors. Next, we analyzed Mct8/Oatp1c1 double-knockout mice, where brain uptake of THs is strongly reduced. NSC proliferation and determination to neuronal fates were severely affected, but not SVZ-oligodendroglial progenitor generation. This work highlights how tight control of TH availability determines NSC function and glial-neuron cell-fate choice in adult brains.


Assuntos
Encéfalo/metabolismo , Ventrículos Laterais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Tronco Neurais/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo , Hormônios Tireóideos/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Transporte Biológico , Diferenciação Celular , Proliferação de Células , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores/genética
9.
Environ Pollut ; 285: 117654, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34289950

RESUMO

North-Eastern Brazil saw intensive application of the insecticide pyriproxyfen (PPF) during the microcephaly outbreak caused by the Zika virus (ZIKV). ZIKV requires the neural RNA-binding protein Musashi-1 to replicate. Thyroid hormone (TH) represses MSI1. PPF is a suspected TH disruptor. We hypothesized that co-exposure to the main metabolite of PPF, 4'-OH-PPF, could exacerbate ZIKV effects through increased MSI1 expression. Exposing an in vivo reporter model, Xenopus laevis, to 4'-OH-PPF decreased TH signaling and increased msi1 mRNA and protein, confirming TH-antagonistic properties. Next, we investigated the metabolite's effects on mouse subventricular zone-derived neural stem cells (NSCs). Exposure to 4'-OH-PPF dose-dependently reduced neuroprogenitor proliferation and dysregulated genes implicated in neurogliogenesis. The highest dose induced Msi1 mRNA and protein, increasing cell apoptosis and the ratio of neurons to glial cells. Given these effects of the metabolite alone, we considered if combined infection with ZIKV worsened neurogenic events. Only at the fourth and last day of incubation did co-exposure of 4'-OH-PPF and ZIKV decrease viral replication, but viral RNA copies stayed within the same order of magnitude. Intracellular RNA content of NSCs was decreased in the combined presence of 4'-OH-PPF and ZIKV, suggesting a synergistic block of transcriptional machinery. Seven out of 12 tested key genes in TH signaling and neuroglial commitment were dysregulated by co-exposure, of which four were unaltered when exposed to 4'-OH-PPF alone. We conclude that 4'-OH-PPF is an active TH-antagonist, altering NSC processes known to underlie correct cortical development. A combination of the TH-disrupting metabolite and ZIKV could aggravate the microcephaly phenotype.


Assuntos
Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Animais , Camundongos , Piridinas , Hormônios Tireóideos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32477268

RESUMO

Monocarboxylate transporter 8 (MCT8) deficiency or the Allan-Herndon-Dudley Syndrome (AHDS) is an X-linked psychomotor disability syndrome with around 320 clinical cases described worldwide. SLC16A2 gene mutations, encoding the thyroid hormone (TH) transporter MCT8, result in intellectual disability due to impaired TH uptake in the developing brain. MCT8 deficiency is a multi-organ affecting disease with a predominant neuronal cell-based pathology, with the glial component inadequately investigated. However, deficiency in myelin, a key component of white matter (WM) enabling fast nerve conduction, is a TH-dependent hallmark of the disease. Nevertheless, analysis of the myelin status in AHDS patients has led to conflicting interpretations. The majority of individual case studies reported delayed myelination, that was restored later in life. In contrast, post-mortem studies and high-resolution MRIs detected WM (micro-) abnormalities throughout adolescence, suggesting permanent hypomyelination. Thus, interpretations vary depending on methodology to investigate WM microstructure. Further, it is unknown whether the mutation within the MCT8 is linked to the severity of the myelin deficiency. Consequently, terminology is inconsistent among reports, and AHDS is occasionally misdiagnosed as another WM disorder. The evolutionary conserved TH signaling pathway that promotes the generation of myelinating oligodendrocytes enabled deciphering how the lack of MCT8 might affect myelinogenesis. Linking patient findings on myelination to those obtained from models of MCT8 deficiency revealed underlying pathophysiological mechanisms, but knowledge gaps remain, notably how myelination progresses both spatially and temporally in MCT8 deficiency. This limits predicting how myelin integrity might benefit therapeutically, and when to initiate. A recurrent observation in clinical trials is the absence of neurological improvement. Testing MCT8-independent thyromimetics in models, and evaluating treatments used in other demyelinating diseases, despite different etiologies, is crucial to propose new therapeutic strategies combatting this devastating disease.


Assuntos
Doenças Desmielinizantes/patologia , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Transportadores de Ácidos Monocarboxílicos/deficiência , Hipotonia Muscular/complicações , Atrofia Muscular/complicações , Animais , Doenças Desmielinizantes/etiologia , Humanos
11.
Front Neurosci ; 14: 875, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982671

RESUMO

Neurodegenerative diseases are characterized by chronic neuronal and/or glial cell loss, while traumatic injury is often accompanied by the acute loss of both. Multipotent neural stem cells (NSCs) in the adult mammalian brain spontaneously proliferate, forming neuronal and glial progenitors that migrate toward lesion sites upon injury. However, they fail to replace neurons and glial cells due to molecular inhibition and the lack of pro-regenerative cues. A major challenge in regenerative biology therefore is to unveil signaling pathways that could override molecular brakes and boost endogenous repair. In physiological conditions, thyroid hormone (TH) acts on NSC commitment in the subventricular zone, and the subgranular zone, the two largest NSC niches in mammals, including humans. Here, we discuss whether TH could have beneficial actions in various pathological contexts too, by evaluating recent data obtained in mammalian models of multiple sclerosis (MS; loss of oligodendroglial cells), Alzheimer's disease (loss of neuronal cells), stroke and spinal cord injury (neuroglial cell loss). So far, TH has shown promising effects as a stimulator of remyelination in MS models, while its role in NSC-mediated repair in other diseases remains elusive. Disentangling the spatiotemporal aspects of the injury-driven repair response as well as the molecular and cellular mechanisms by which TH acts, could unveil new ways to further exploit its pro-regenerative potential, while TH (ant)agonists with cell type-specific action could provide safer and more target-directed approaches that translate easier to clinical settings.

12.
Acta Physiol (Oxf) ; 228(1): e13316, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121082

RESUMO

In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro- and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro- and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Neurais/fisiologia , Hormônios Tireóideos/metabolismo , Vertebrados/fisiologia , Animais , Humanos
13.
Biol Aujourdhui ; 213(1-2): 7-16, 2019.
Artigo em Francês | MEDLINE | ID: mdl-31274098

RESUMO

Thyroid hormones (THs) are vital for vertebrate brain function throughout life, from early development to ageing. Epidemiological studies show an adequate supply of maternal TH during pregnancy to be necessary for normal brain development, and this from the first trimester of onwards. Maternal TH deficiency irreversibly affects fetal brain development, increasing the risk of offspring cognitive disorders and IQ loss. Mammalian and non-mammalian (zebrafish, xenopus, chicken) models are useful to dissect TH-dependent cellular and molecular mechanisms governing embryonic and fetal brain development: a complex process including cell proliferation, survival, determination, migration, differentiation and maturation of neural stem cells (NSCs). Notably, rodent models have strongly contributed to understand the key neurogenic roles of TH still at work in adult life. Neurogenesis continues in two main areas, the sub-ventricular zone lining the lateral ventricles (essential for olfaction) and the sub-granular zone in the dentate gyrus of the hippocampus (involved in memory, learning and mood control). In both niches, THs tightly regulate the balance between neurogenesis and oligodendrogenesis under physiological and pathological contexts. Understanding how THs modulate NSCs determination toward a neuronal or a glial fate throughout life is a crucial question in neural stem cell biology. Providing answers to this question can offer therapeutic strategies for brain repair, notably in neurodegenerative diseases, demyelinating diseases or stroke where new neurons and/or oligodendrocytes are required. The review focuses on TH regulation of NSC fate in mammals and humans both during development and in the adult.


Assuntos
Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Hormônios Tireóideos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Gravidez , Hormônios Tireóideos/fisiologia
14.
Sci Rep ; 9(1): 19689, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873158

RESUMO

Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases.


Assuntos
Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Pré-Albumina/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Feminino , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Neurogênese , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Pré-Albumina/deficiência , Pré-Albumina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Sexuais , Hormônios Tireóideos/metabolismo
15.
PLoS Biol ; 3(4): e96, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15760269

RESUMO

Signaling by the Notch ligands Delta (Dl) and Serrate (Ser) regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib) gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Membrana/genética , Receptores Notch/genética , Ubiquitina-Proteína Ligases/genética , Animais , Drosophila melanogaster/enzimologia , Endocitose , Peptídeos e Proteínas de Sinalização Intercelular , Proteína Jagged-1 , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas Serrate-Jagged , Transdução de Sinais
18.
Mol Cell Endocrinol ; 459: 104-115, 2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545819

RESUMO

Thyroid hormone (TH) signalling, an evolutionary conserved pathway, is crucial for brain function and cognition throughout life, from early development to ageing. In humans, TH deficiency during pregnancy alters offspring brain development, increasing the risk of cognitive disorders. How TH regulates neurogenesis and subsequent behaviour and cognitive functions remains a major research challenge. Cellular and molecular mechanisms underlying TH signalling on proliferation, survival, determination, migration, differentiation and maturation have been studied in mammalian animal models for over a century. However, recent data show that THs also influence embryonic and adult neurogenesis throughout vertebrates (from mammals to teleosts). These latest observations raise the question of how TH availability is controlled during neurogenesis and particularly in specific neural stem cell populations. This review deals with the role of TH in regulating neurogenesis in the developing and the adult brain across different vertebrate species. Such evo-devo approaches can shed new light on (i) the evolution of the nervous system and (ii) the evolutionary control of neurogenesis by TH across animal phyla. We also discuss the role of thyroid disruptors on brain development in an evolutionary context.


Assuntos
Encéfalo/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Hormônios Tireóideos/genética , Animais , Evolução Biológica , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Embrião de Mamíferos , Embrião não Mamífero , Disruptores Endócrinos/toxicidade , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Transdução de Sinais , Hormônios Tireóideos/metabolismo
19.
Elife ; 62017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28875931

RESUMO

In the adult brain, both neurons and oligodendrocytes can be generated from neural stem cells located within the Sub-Ventricular Zone (SVZ). Physiological signals regulating neuronal versus glial fate are largely unknown. Here we report that a thyroid hormone (T3)-free window, with or without a demyelinating insult, provides a favorable environment for SVZ-derived oligodendrocyte progenitor generation. After demyelination, oligodendrocytes derived from these newly-formed progenitors provide functional remyelination, restoring normal conduction. The cellular basis for neuronal versus glial determination in progenitors involves asymmetric partitioning of EGFR and TRα1, expression of which favor glio- and neuro-genesis, respectively. Moreover, EGFR+ oligodendrocyte progenitors, but not neuroblasts, express high levels of a T3-inactivating deiodinase, Dio3. Thus, TRα absence with high levels of Dio3 provides double-pronged blockage of T3 action during glial lineage commitment. These findings not only transform our understanding of how T3 orchestrates adult brain lineage decisions, but also provide potential insight into demyelinating disorders.


Assuntos
Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Hipotireoidismo , Oligodendroglia/fisiologia , Remielinização , Adulto , Animais , Receptores ErbB/metabolismo , Humanos , Iodeto Peroxidase/metabolismo , Camundongos , Receptores alfa dos Hormônios Tireóideos/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-24808891

RESUMO

The vital roles of thyroid hormone in multiple aspects of perinatal brain development have been known for over a century. In the last decades, the molecular mechanisms underlying effects of thyroid hormone on proliferation, differentiation, migration, synaptogenesis, and myelination in the developing nervous system have been gradually dissected. However, recent data reveal that thyroid signaling influences neuronal development throughout life, from early embryogenesis to the neurogenesis in the adult brain. This review deals with the latter phase and analyses current knowledge on the role of T3, the active form of thyroid hormone, and its receptors in regulating neural stem cell function in the hippocampus and the subventricular zone, the two principal sites harboring neurogenesis in the adult mammalian brain. In particular, we discuss the critical roles of T3 and TRα1 in commitment to a neuronal phenotype, a process that entails the repression of a number of genes notably that encoding the pluripotency factor, Sox2. Furthermore, the question of the relevance of thyroid hormone control of adult neurogenesis is considered in the context of brain aging, cognitive decline, and neurodegenerative disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA