Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806175

RESUMO

Short peptides have great potential as safe and effective anticancer drug leads. Herein, the influence of short cyclic peptides containing the Pro-Pro-Phe-Phe sequence on patient-derived melanoma cells was investigated. Cyclic peptides such as cyclo(Leu-Ile-Ile-Leu-Val-Pro-Pro-Phe-Phe-), called CLA, and cyclo(Pro-homoPro-ß3homoPhe-Phe-), called P11, exert the cytotoxic and the cytostatic effects in melanoma cells, respectively. CLA was the most active peptide as it reduced the viability of melanoma cells to 50% of control at about 10 µM, whereas P11 at about 40 µM after 48 h incubation. Interestingly, a linear derivative of P11 did not induce any effect in melanoma cells confirming previous studies showing that cyclic peptides exert better biological activity compared to their linear counterparts. According to in silico predictions, cyclic tetrapeptides show a better pharmacokinetic and toxic profile to humans than CLA. Notably, the spatial structure of those peptides containing synthetic amino acids has not been explored yet. In the Cambridge Structural Database, there is only one such cyclic tetrapeptide, cyclo((R)-ß2homoPhe-D-Pro-Lys-Phe-), while in the Protein Data Bank-none. Therefore, we report the first crystal structure of cyclo(Pro-Pro-ß3homoPhe-Phe-), denoted as 4B8M, a close analog of P11, which is crucial for drug discovery. Comparative molecular and supramolecular analysis of both structures was performed. The DFT findings revealed that 4B8M is well interpreted in the water solution. The results of complex Hirshfeld surface investigations on the cooperativity of interatomic contacts in terms of electrostatic and energetic features are provided. In short, the enrichment ratio revealed O…H/H…O and C…H/H…C as privileged intercontacts in the crystals in relation to basic and large supramolecular H-bonding synthon patterns. Furthermore, the ability of self-assemble 4B8M leading to a nanotubular structure is also discussed.


Assuntos
Melanoma , Peptídeos Cíclicos , Dipeptídeos , Humanos , Melanoma/tratamento farmacológico , Peptídeos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
2.
Molecules ; 26(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467522

RESUMO

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Assuntos
Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Aminoácidos/química , Anti-Infecciosos/química , Antivirais/química , Simulação por Computador , Cosmecêuticos/química , Cosmecêuticos/uso terapêutico , Suplementos Nutricionais , Técnicas de Transferência de Genes , Humanos , Lactoferrina/química , Bicamadas Lipídicas , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Peptídeos/administração & dosagem , Células-Tronco , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/farmacologia , Tratamento Farmacológico da COVID-19
3.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138329

RESUMO

The success of innovative drugs depends on an interdisciplinary and holistic approach to their design and development. The supramolecular architecture of living systems is controlled by non-covalent interactions to a very large extent. The latter are prone to extensive cooperation and like a virtuoso play a symphony of life. Thus, the design of effective ligands should be based on thorough knowledge on the interactions at either a molecular or high topological level. In this work, we emphasize the importance of supramolecular structure and ligand-based design keeping the potential of supramolecular H-bonding synthons in focus. In this respect, the relevance of supramolecular chemistry for advanced therapies is appreciated and undisputable. It has developed tools, such as Hirshfeld surface analysis, using a huge data on supramolecular interactions in over one million structures which are deposited in the Cambridge Structure Database (CSD). In particular, molecular interaction surfaces are useful for identification of macromolecular active sites followed by in silico docking experiments. Ornithine-derived compounds are a new, promising class of multi-targeting ligands for innovative therapeutics and cosmeceuticals. In this work, we present the synthesis together with the molecular and supramolecular structure of a novel ornithine derivative, namely N-α,N-δ)-dibenzoyl-(α)-hydroxymethylornithine, 1. It was investigated by modern experimental and in silico methods in detail. The incorporation of an aromatic system into the ornithine core induces stacking interactions, which are vital in biological processes. In particular, rare C=O…π intercontacts have been identified in 1. Supramolecular interactions were analyzed in all structures of ornithine derivatives deposited in the CSD. The influence of substituent was assessed by the Hirshfeld surface analysis. It revealed that the crystal packing is stabilized mainly by H…O, O…H, C…H, Cl (Br, F)…H and O…O interactions. Additionally, π…π, C-H…π and N-O…π interactions were also observed. All relevant H-bond energies were calculated using the Lippincott and Schroeder H-bond model. A library of synthons is provided. In addition, the large synthons (Long-Range Synthon Aufbau Module) were considered. The DFT optimization either in vacuo or in solutio yields very similar molecular species. The major difference with the relevant crystal structure was related to the conformation of terminal benzoyl C15-C20 ring. Furthermore, in silico prediction of the extensive physicochemical ADME profile (absorption, distribution, metabolism and excretion) related to the drug-likeness and medicinal chemistry friendliness revealed that a novel ornithine derivative 1 has the potential to be a new drug candidate. It has shown good in silico absorption and very low toxicity.


Assuntos
Ornitina/química , Bases de Dados Factuais , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular
4.
Vnitr Lek ; 65(11): 679-684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31906673

RESUMO

Animal and epidemiologic studies suggest that the use of warfarin might reduce cancer incidence. The antitumor potential of warfarin is demonstrated in different experimental cancer models. Specifically, studies in murine cancer models have shown that warfarin blocks AXL receptor tyrosine kinase by inhibiting a vitamin K-dependent protein called GAS6, thereby may halt the spread of cancer cells. An off-target effect of the anticoagulant warfarin is inhibition of GAS6-AXL signaling, which enhances antitumor immunity and blocks tumorigenesis independently of anticoagulation. Hence, the observed association between warfarin use and lower cancer incidence is likely due to an enhanced antitumor immune surveillance of early cancer. The large observational study also showed a reduction in cancer incidence among regular warfarin users. The study data indicate that warfarin provides a possible cancer protection. Despite some limitations, the results of this study give further support for the hypothesis that warfarin use decreases cancer incidence, which warrants continued investigation. This finding may have important implications for choosing medications in patients who need anticoagulant therapy.


Assuntos
Anticoagulantes/uso terapêutico , Neoplasias/prevenção & controle , Varfarina/uso terapêutico , Animais , Anticoagulantes/farmacologia , Humanos , Incidência , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Neoplasias/imunologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Varfarina/farmacologia , Receptor Tirosina Quinase Axl
5.
Int J Mol Sci ; 17(3): 388, 2016 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-27007371

RESUMO

Theoretical chemistry methods have been used to study the molecular properties of antiplatelet agents (ticlopidine, clopidogrel, prasugrel, elinogrel, ticagrelor and cangrelor) and several thiol-containing active metabolites. The geometries and energies of most stable conformers of these drugs have been computed at the Becke3LYP/6-311++G(d,p) level of density functional theory. Computed dissociation constants show that the active metabolites of prodrugs (ticlopidine, clopidogrel and prasugrel) and drugs elinogrel and cangrelor are completely ionized at pH 7.4. Both ticagrelor and its active metabolite are present at pH = 7.4 in neutral undissociated form. The thienopyridine prodrugs ticlopidine, clopidogrel and prasugrel are lipophilic and insoluble in water. Their lipophilicity is very high (about 2.5-3.5 logP values). The polar surface area, with regard to the structurally-heterogeneous character of these antiplatelet drugs, is from very large interval of values of 3-255 Ų. Thienopyridine prodrugs, like ticlopidine, clopidogrel and prasugrel, with the lowest polar surface area (PSA) values, exhibit the largest absorption. A high value of polar surface area (PSA) of cangrelor (255 Ų) results in substantial worsening of the absorption in comparison with thienopyridine drugs.


Assuntos
Inibidores da Agregação Plaquetária/química , Absorção Fisico-Química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Solubilidade , Propriedades de Superfície
6.
Molecules ; 21(2)2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26861270

RESUMO

The geometries and energies of factor Xa inhibitors edoxaban, eribaxaban, fidexaban, darexaban, letaxaban, and the dual factor Xa and thrombin inhibitors tanogitran and SAR107375 in both the gas-phase and aqueous solution were studied using the Becke3LYP/6-31++G(d,p) or Grimme's B97D/6-31++G(d,p) method. The fully optimized conformers of these anticoagulants show a characteristic l-shape structure, and the water had a remarkable effect on the equilibrium geometry. According to the calculated pKa values eribaxaban and letaxaban are in neutral undissociated form at pH 7.4, while fidexaban and tanogitran exist as zwitterionic structures. The lipophilicity of the inhibitors studied lies within a large range of log P between 1 and 4. The dual inhibitor SAR107375 represents an improvement in structural, physicochemical and pharmacokinetic characteristics over tanogitran. At blood pH, SAR107375 predominantly exists in neutral form. In contrast with tanogitran, it is better absorbed and more lipophilic and active after oral application.


Assuntos
Inibidores do Fator Xa/química , Amidinas/química , Estabilidade de Medicamentos , Fator Xa/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular , Protrombina/química , Piridinas/química , Solventes/química
7.
Vnitr Lek ; 61 Suppl 5: 63-6, 2015.
Artigo em Tcheco | MEDLINE | ID: mdl-26800476

RESUMO

UNLABELLED: Severe coagulation factor XII (FXII) deficiency is a very rare, mysterious and not well known inherited condition. Unlike other coagulation factor deficiencies, it is totally asymptomatic. Surprisingly, it does not lead to abnormal bleeding, even with major surgical procedures. The explanation for the lack of bleeding manifestations is unknown. It is suggested, but unproven, that patients are not sufficiently protected from thrombosis. FXII deficiency is usually discovered by accident through a routine coagulation testing done prior to surgery. Since FXII plays an important role in clot formation during in vitro measurements, its deficiency causes a marked prolongation of the activated partial thromboplastin time in the laboratory examination. The main concern related to FXII deficiency is the unnecessary testing, delay in health care and worry of surgical interventions that may be prompted by the abnormal laboratory result. KEY WORDS: activated partial thromboplastin time - bleeding - blood coagulation - factor XII.

8.
Vnitr Lek ; 61(12 Suppl 5): 5S63-6, 2015 Dec.
Artigo em Eslovaco | MEDLINE | ID: mdl-27124975

RESUMO

Severe coagulation factor XII (FXII) deficiency is a very rare, mysterious and not well known inherited condition. Unlike other coagulation factor deficiencies, it is totally asymptomatic. Surprisingly, it does not lead to abnormal bleeding, even with major surgical procedures. The explanation for the lack of bleeding manifestations is unknown. It is suggested, but unproven, that patients are not sufficiently protected from thrombosis. FXII deficiency is usually discovered by accident through a routine coagulation testing done prior to surgery. Since FXII plays an important role in clot formation during in vitro measurements, its deficiency causes a marked prolongation of the activated partial thromboplastin time in the laboratory examination. The main concern related to FXII deficiency is the unnecessary testing, delay in health care and worry of surgical interventions that may be prompted by the abnormal laboratory result.


Assuntos
Deficiência do Fator XII/sangue , Tempo de Tromboplastina Parcial , Doenças Assintomáticas , Deficiência do Fator XII/diagnóstico , Humanos , Achados Incidentais , Cuidados Pré-Operatórios
9.
Acta Crystallogr C ; 69(Pt 6): 630-3, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23744384

RESUMO

Low-temperature X-ray diffraction experiments were employed to investigate the crystal structures of an orthorhombic polymorph of the intramolecular cyclization product of perindopril, a popular angiotensive-converting enzyme (ACE) inhibitor, namely ethyl (2S)-2-[(3S,5aS,9aS,10aS)-3-methyl-1,4-dioxo-5a,6,7,8,9,9a,10,10a-octahydro-3H-pyrazino[1,2-a]indol-2-yl]pentanoate, C19H30N2O4, (Io), and its tetragonal equivalent, (It), which was previously reported at ambient temperature [Bojarska et al. (2013). J. Chil. Chem. Soc. 58, 1415-1417]. Polymorph (Io) crystallizes in the orthorhombic space group P2(1)2(1)2(1) with two molecules in the asymmetric unit, while tetragonal form (It) crystallizes in the space group P4(1)2(1)2 with one molecule in the asymmetric unit. The geometric parameters of (Io) are very similar to those of (It). The six-membered rings in both polymorphs adopt a slightly deformed chair conformation and the piperazinedione rings are in a boat conformation. However, the proline rings adopt an envelope conformation in (Io), while in (It) the ring exists in a slightly deformed half-chair conformation. The most significant difference between the two structures is the orientation of the ethyl pentanoate chain. Molecules associate in pairs in a head-to-tail manner forming infinite columns. In (Io), molecules are related by a twofold screw axis forming identical columns, while in (It), molecules in successive neighbouring columns are related by alternating twofold screw axes and fourfold screw axes. In both cases, the crystal packing is stabilized by weak intermolecular C-H···O interactions only.


Assuntos
Perindopril/química , Cristalização , Cristalografia por Raios X , Ciclização , Modelos Moleculares , Conformação Molecular
10.
J Biol Inorg Chem ; 17(4): 621-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327774

RESUMO

Quantum chemistry methods have been applied to charged complexes of the alkali metals Li(+), Na(+), and K(+) with the aromatic amino acids (AAAs) phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp). The geometries of 72 different complexes (Phe·M, Tyr·M, Trp·M, M is Li(+), Na(+), or K(+)) were completely optimized at the B3LYP/6-311+G(d,p) level of density functional theory. The solvent effect on the geometry and stability of individual complexes was studied by making use of a microsolvation model. The interaction enthalpies, entropies, and Gibbs energies of nine different complexes of the systems Phe·M, Tyr·M, and Trp·M (M is Li(+), Na(+), or K(+)) were also determined at the B3LYP density functional level of theory. The calculated Gibbs binding energies of the M(+)-AAA complexes follow the order Phe < Tyr < Trp for all three metal cations studied. Among the three AAAs studied, the indole ring of Trp is the best π donor for alkali metal cations. Our calculations demonstrated the existence of strong cation-π interactions between the alkali metals and the aromatic side chains of the three AAAs. These AAAs comprise about 8% of all known protein sequences. Thus, besides the potential for hydrogen-bond interaction, aromatic residues of Phe, Tyr, and Trp show great potential for π-donor interactions. The existence of cation-π interaction in proteins has also been demonstrated experimentally. However, more complex experimental studies of metal cation-π interaction in diverse biological systems will no doubt lead to more exact validation of these investigations.


Assuntos
Metais Alcalinos/química , Fenilalanina/química , Triptofano/química , Tirosina/química , Água/química , Sítios de Ligação , Cátions/química , Cátions Monovalentes/química , Estrutura Molecular , Teoria Quântica
11.
Acta Crystallogr C ; 68(Pt 9): o341-3, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22935500

RESUMO

The dimethyl sulfoxide hemisolvate of perindoprilat [systematic name: (1S)-2-((S)-{1-[(2S,3aS,7aS)-2-carboxyoctahydro-1H-indol-1-yl]-1-oxopropan-2-yl}azaniumyl)pentanoate dimethyl sulfoxide hemisolvate], C(17)H(28)N(2)O(5)·0.5C(2)H(6)OS, an active metabolite of perindopril, has been synthesized, structurally characterized by single-crystal X-ray diffraction and compared with its ethanol disolvate analogue [Pascard et al. (1991). J. Med. Chem. 34, 663-669]. Both compounds crystallize in the orthorhombic P2(1)2(1)2(1) space group in the same zwitterionic form, with a protonated alanine N atom and an anionic carboxylate group at the n-alkyl chain. The three structural units present in the unit cell (two zwitterions and the solvent molecule) are held together by a rich system of O-H···O, N-H···O and C-H···O hydrogen-bond contacts.


Assuntos
Ânions/química , Indóis/química , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Molecular , Solventes/química , Estereoisomerismo
12.
Acta Crystallogr C ; 68(Pt 11): o443-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23124459

RESUMO

The title compound [systematic name: (1S)-2-((S)-{1-[(2S,3aS,7aS)-2-carboxyoctahydro-1H-indol-1-yl]-1-oxopropan-2-yl}azaniumyl)pentanoate monohydrate], C(17)H(28)N(2)O(5)·H(2)O, (I)·H(2)O, the active metabolite of the antihypertensive and cardiovascular drug perindopril, was obtained during polymorphism screening of perindoprilat. It crystallizes in the chiral orthorhombic space group P2(1)2(1)2(1), the same as the previously reported ethanol disolvate [Pascard, Guilhem, Vincent, Remond, Portevin & Laubie (1991). J. Med. Chem. 34, 663-669] and dimethyl sulfoxide hemisolvate [Bojarska, Maniukiewicz, Sieron, Fruzinski, Kopczacki, Walczynski & Remko (2012). Acta Cryst. C68, o341-o343]. The asymmetric unit of (I)·H(2)O contains one independent perindoprilat zwitterion and one water molecule. These interact via strong hydrogen bonds to give a cyclic R(2)(2)(7) synthon, which provides a rigid molecular conformation. The geometric parameters of all three forms are similar. The conformations of the perhydroindole group are almost identical, but the n-alkyl chain has conformational freedom. A three-dimensional hydrogen-bonding network of O-H···O and N-H···O interactions is observed in the crystal structure of (I)·H(2)O, similar to the other two solvates, but because of the presence of different solvents the three crystal structures have diverse packing motifs. All three solvatomorphs are additionally stabilized by nonclassical weak C-H···O contacts.


Assuntos
Dimetil Sulfóxido/química , Indóis/química , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Molecular
13.
Front Chem ; 9: 679776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055746

RESUMO

Targeting the polyamine biosynthetic pathway by inhibiting ornithine decarboxylase (ODC) is a powerful approach in the fight against diverse viruses, including SARS-CoV-2. Difluoromethylornithine (DFMO, eflornithine) is the best-known inhibitor of ODC and a broad-spectrum, unique therapeutical agent. Nevertheless, its pharmacokinetic profile is not perfect, especially when large doses are required in antiviral treatment. This article presents a holistic study focusing on the molecular and supramolecular structure of DFMO and the design of its analogues toward the development of safer and more effective formulations. In this context, we provide the first deep insight into the supramolecular system of DFMO supplemented by a comprehensive, qualitative and quantitative survey of non-covalent interactions via Hirshfeld surface, molecular electrostatic potential, enrichment ratio and energy frameworks analysis visualizing 3-D topology of interactions in order to understand the differences in the cooperativity of interactions involved in the formation of either basic or large synthons (Long-range Synthon Aufbau Modules, LSAM) at the subsequent levels of well-organized supramolecular self-assembly, in comparison with the ornithine structure. In the light of the drug discovery, supramolecular studies of amino acids, essential constituents of proteins, are of prime importance. In brief, the same amino-carboxy synthons are observed in the bio-system containing DFMO. DFT calculations revealed that the biological environment changes the molecular structure of DFMO only slightly. The ADMET profile of structural modifications of DFMO and optimization of its analogue as a new promising drug via molecular docking are discussed in detail.

14.
Amino Acids ; 39(5): 1309-19, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20364281

RESUMO

Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-histidine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water on structures of His·M(H2O)m, m=0.1 complexes have been determined theoretically employing density functional theories using extended basis sets. Of the five stable complexes investigated the relative stability of the gas-phase complexes computed with DFT methods (with one exception of K+ systems) suggest metallic complexes of the neutral L-histidine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of L-histidine in the presence of the metal cations Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to L-histidine is exhibited by the Cu2+ cation. The computed Gibbs energies ΔG are negative, span a rather broad energy interval (from -130 to -1,300 kJ/mol), and upon hydration are appreciably lowered.


Assuntos
Histidina/química , Metais/química , Água/química , Íons/química , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Estereoisomerismo , Termodinâmica
15.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114370

RESUMO

Proline is a unique, endogenous amino acid, prevalent in proteins and essential for living organisms. It is appreciated as a tecton for the rational design of new bio-active substances. Herein, we present a short overview of the subject. We analyzed 2366 proline-derived structures deposited in the Cambridge Structure Database, with emphasis on the angiotensin-converting enzyme inhibitors. The latter are the first-line antihypertensive and cardiological drugs. Their side effects prompt a search for improved pharmaceuticals. Characterization of tectons (molecular building blocks) and the resulting supramolecular synthons (patterns of intermolecular interactions) involving proline derivatives, as presented in this study, may be useful for in silico molecular docking and macromolecular modeling studies. The DFT, Hirshfeld surface and energy framework methods gave considerable insight into the nature of close inter-contacts and supramolecular topology. Substituents of proline entity are important for the formation and cooperation of synthons. Tectonic subunits contain proline moieties characterized by diverse ionization states: -N and -COOH(-COO-), -N+ and -COOH(-COO-), -NH and -COOH(-COO-), -NH+ and -COOH(-COO-), and -NH2+ and -COOH(-COO-). Furthermore, pharmacological profiles of ACE inhibitors and their impurities were determined via an in silico approach. The above data were used to develop comprehensive classification, which may be useful in further drug design studies.

16.
Acta Crystallogr C Struct Chem ; 76(Pt 4): 328-345, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229714

RESUMO

Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc-tyrosine or Fmoc-phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc-protected amino acid, namely, 2-{[(9H-fluoren-9-ylmethoxy)carbonyl](methyl)amino}-3-{4-[(2-hydroxypropan-2-yl)oxy]phenyl}propanoic acid or N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, Fmoc-N-Me-Tyr(t-Bu)-OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single-crystal X-ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N-Fmoc-phenylalanine [Draper et al. (2015). CrystEngComm, 42, 8047-8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H...H, C...H/H...C and O...H/H...O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen-bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C-H...O, C-H...π, (fluorenyl)C-H...Cl(I), C-Br...π(fluorenyl) and C-I...π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long-Range Synthon Aufbau Modules, further supported by energy-framework calculations, are discussed. Furthermore, the relevance of Fmoc-based supramolecular hydrogen-bonding patterns in biocomplexes are emphasized, for the first time.


Assuntos
Aminoácidos/química , Fluorenos/síntese química , Metiltirosinas/química , Fenilalanina/química , Aminoácidos/síntese química , Simulação por Computador , Cristalografia por Raios X , Fluorenos/química , Ligação de Hidrogênio , Conformação Molecular , Inquéritos e Questionários
17.
J Biomol Struct Dyn ; 25(6): 599-608, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18399693

RESUMO

Studies that allow computing values of aqueous proton dissociation constants (pKa), gas phase proton affinities, and the free energy of solvation have been performed for six members of angiotensin-I-converting enzyme (ACE) inhibitor family (captopril, enalaprilat, imidaprilat, ramiprilat, perindoprilat, and spiraprilat). Density functional theory (DFT) calculations using PBE1PBE functional on optimized molecular geometries have been carried out to investigate the thermodynamics of gas-phase protonation. The conductor-like polarizable continuum model (CPCM) solvation method at various levels of theory was applied to calculate the free energy of solvation for the ACE inhibitors and their respective anions. The CPCM solvation calculations were performed on both gas-phase and solvent-phase optimized structures. The combination of gas-phase and solvation energies according to the thermodynamic cycle enabled us to compute accurate pKa values for the all studied molecules.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Prótons , Biologia Computacional , Concentração de Íons de Hidrogênio , Solventes/química , Termodinâmica
18.
J Phys Chem A ; 112(33): 7652-61, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18652440

RESUMO

Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.


Assuntos
Arginina/química , Metais/química , Água/química , Cátions/química , Simulação por Computador , Entropia , Gases/química , Modelos Moleculares , Proteínas/química , Prótons
19.
J Phys Chem B ; 111(9): 2313-21, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17295532

RESUMO

Our work reports in detail the results of systematic large-scale theoretical investigations of the glycosaminoglycan building units 1-OMe DeltaIdoA-2SNa2 (1; 2H1 and 1H2 forms), 1-OMe GlcN-S6SNa2 (2), 1,4-DiOMe GlcNa (3), 1,4-DiOMe GlcN-S3S6SNa3 (4), 1,4-DiOMe IdoA-2SNa2 (5; 4C1, 1C4, and 2So conformations), and 1,4-DiOMe GlcN-S6SNa2 (6) at the BP86/TZ2P level of the density functional theory. The optimized geometries indicate that the most stable structure of these monomeric units in the neutral state is stabilized via "multifurcated" sodium bonds. The equilibrium structure of the biologically active anionic forms of the glycosaminoglycans studied changed considerably in a water solution. The computed interaction energies, DeltaE, of sodium coordinated systems 1-6 are negative and span a rather broad energy interval (from -130 to -590 kcal mol-1). Computations that include the effect of solvation indicated that in water the relative stability of Na+...ligand ionic bonds is considerably diminished. The computed interaction energy in water is small (from -20 to -53 kcal mol-1) and negative, that is, stabilizing.


Assuntos
Glicosaminoglicanos/química , Ânions , Heparina/química , Ligação de Hidrogênio , Ligantes , Modelos Químicos , Modelos Moleculares , Modelos Teóricos , Conformação Molecular , Sódio/química , Software , Solventes , Termodinâmica , Água/química
20.
J Colloid Interface Sci ; 294(2): 304-8, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16115640

RESUMO

Preferential adsorption of dipeptide diastereomers (dialanine, Val-Ala) on clay mineral surfaces was observed. Significantly higher adsorption of dipeptides composed from only one type of enantiomer of amino acid units in comparison to those containing both L- and D-type of amino acid units in their molecules, was experimentally proven. This selectivity was explained in terms of different hydrophobic properties of diastereomers, which are probably controlled by intramolecular interactions between nonpolar and polar parts of dipeptide molecules affected by their stereochemistry. A significantly higher reactivity of stereoisomers composed from the same type of amino acid enantiomers to form amide bonds was proven as well. Theoretical study could distinguish different properties of the diastereomers. The results of the calculations indicate possible effects of molecular stability in the stereoselectivity during the adsorption and reactions of Ala(2) diastereomers.


Assuntos
Peptídeos/química , Proteínas/química , Adsorção , Alanina/química , Ligação Competitiva , Físico-Química/métodos , Dipeptídeos/química , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Minerais , Solo , Estereoisomerismo , Temperatura , Fatores de Tempo , Valina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA