Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(4): e2306516, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715101

RESUMO

Antimony selenide (Sb2 Se3 ) is a highly promising photovoltaic material thanks to its outstanding optoelectronic properties, as well as its cost-effective and eco-friendly merits. However, toxic CdS is widely used as an electron transport layer (ETL) in efficient Sb2 Se3 solar cells, which largely limit their development toward market commercialization. Herein, an effective green Cd-free ETL of SnOx is introduced and deposited by atomic layer deposition method. Additionally, an important post-annealing treatment is designed to further optimize the functional layers and the heterojunction interface properties. Such engineering strategy can optimize SnOx ETL with higher nano-crystallinity, higher carrier density, and less defect groups, modify Sb2 Se3 /SnOx heterojunction with better interface performance and much desirable "spike-like" band alignment, and also improve the Sb2 Se3 light absorber layer quality with passivated bulk defects and prolonged carrier lifetime, and therefore to enhance carrier separation and transport while suppressing non-radiative recombination. Finally, the as-fabricated Cd-free Mo/Sb2 Se3 /SnOx /ITO/Ag thin-film solar cell exhibits a stimulating efficiency of 7.39%, contributing a record value for Cd-free substrate structured Sb2 Se3 solar cells reported to date. This work provides a viable strategy for developing and broadening practical applications of environmental-friendly Sb2 Se3 photovoltaic devices.

2.
Angew Chem Int Ed Engl ; : e202413108, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262088

RESUMO

Antimony selenosulfide (Sb2(S,Se)3) has obtained widespread concern for photovoltaic applications as a light absorber due to superior photoelectric features. Accordingly, various deposition technologies have been developed in recent years, especially hydrothermal deposition method, which has achieved a great success. However, device performances are limited with severe carrier recombination, relating to the quality of absorber and interfaces. Herein, bulk and interface defects are simultaneously suppressed by regulating heterogeneous nucleation kinetics with barium dibromide (BaBr2) introduction. In details, the Br adsorbs and dopes on the polar planes of cadmium sulfide (CdS) buffer layer, promoting the exposure of nonpolar planes of CdS, which facilitates the favorable growth of [hk1]-Sb2(S,Se)3 films possessing superior crystallinity and small interface defects. Additionally, the Se/S ratio is increased due to the replacement of S/Se by Br, causing a downshift of the Fermi levels with a benign band alignment and a shallow-level defect. Moreover, Ba2+ is located at grain boundaries by coordination with S and Se ions, passivating grain boundary defects. Consequently, the efficiency is increased from 7.70% to 10.12%. This work opens an avenue towards regulating the heterogeneous nucleation kinetics of Sb2(S,Se)3 film deposited via hydrothermal deposition approach to optimize its crystalline orientation and defect features.

3.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080479

RESUMO

In this work, we performed a systematic comparison of different duration of solvent vapor annealing (SVA) treatment upon state-of-the-art PM6:SY1 blend film, which is to say for the first time, the insufficient, appropriate, and over-treatment's effect on the active layer is investigated. The power conversion efficiency (PCE) of corresponding organic solar cell (OSC) devices is up to 17.57% for the optimized system, surpassing the two counterparts. The properly tuned phase separation and formed interpenetrating network plays an important role in achieving high efficiency, which is also well-discussed by the morphological characterizations and understanding of device physics. Specifically, these improvements result in enhanced charge generation, transport, and collection. This work is of importance due to correlating post-treatment delicacy, thin-film morphology, and device performance in a decent way.

4.
J Colloid Interface Sci ; 669: 804-815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38749219

RESUMO

Herein, a novel copper selenide/zinc selenide/Nitrogen-doped carbon (Cu2Se/ZnSe/NC) sphere was constructed via a combination of cation exchange, selenization and carbonization approaches with zinc-based metal-organic frameworks (ZIF-8) as precursor for sulfadiazine (SDZ) removal. Compared with the ZnSe/NC, the defective Cu2Se/ZnSe interface in the optimizing Cu-ZnSe/NC2 sample caused a remarkably improved adsorption performance. Notably, the adsorption capacity of 129.32 mg/g was better than that of mostly reported adsorbents for SDZ. And the adsorption referred to multiple-layer physical-chemical process that was spontaneous and exothermic. Besides, the Cu-ZnSe/NC2 displayed fast adsorption equilibrium of about 20 min and significant anti-interference ability for inorganic ions. Specially, the adsorbent possessed excellent stability and reusability, which could also be applied for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) dyes removal. Ultimately, the charge redistribution of Cu2Se/ZnSe interface greatly contributes the superior adsorption performance for SDZ, in which electrostatic attraction occupied extremely crucial status as compared to π-π electron-donor-acceptor (π-π EDA) interaction and hydrogen bonding (H-bonding), as revealed by the density function theory (DFT) calculations and experimental results. This study can provide a guideline for design of high-efficient adsorbent with interfacial charge redistribution.

5.
ACS Appl Mater Interfaces ; 12(27): 30572-30583, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32526141

RESUMO

A new type of solar cell based on Cu-doped (p-type) and I-doped (n-type) Sb2Se3 has been designed and fabricated using magnetron sputtering with two different thicknesses of absorber. The overall objective is for better understanding the charge recombination mechanism, especially at the interface region. The investigation has been specifically performed using IMPS (intensity modulated photocurrent spectroscopy), IMVS (intensity modulated photovoltage spectroscopy), and diode characterizations. It has been found that an increase of the absorber thickness leads to a shorter carrier lifetime, but longer diffusion length and lower trap density, resulting in significantly better performance. Furthermore, it is demonstrated that trap-assisted recombination does not affect the short-circuit current density (Jsc), but significantly decreases the open-circuit voltage (Voc). As a result, an encouraging power conversion efficiency (PCE) of 2.41%, fill factor (FF) of 41%, Jsc of 20 mA/cm2, and Voc of 294 mV are obtained. Most importantly, key parameters for further increasing the PCE have been identified.

6.
Nanomaterials (Basel) ; 10(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664516

RESUMO

Antimony selenide (Sb2Se3) has been widely investigated as a promising absorber material for photovoltaic devices. However, low open-circuit voltage (Voc) limits the power conversion efficiency (PCE) of Sb2Se3-based cells, largely due to the low-charge carrier density. Herein, high-quality n-type (Tellurium) Te-doped Sb2Se3 thin films were successfully prepared using a homemade target via magnetron sputtering. The Te atoms were expected to be inserted in the spacing of (Sb4Se6)n ribbons based on increased lattice parameters in this study. Moreover, the thin film was found to possess a narrow and direct band gap of approximately 1.27 eV, appropriate for harvesting the solar energy. It was found that the photoelectric performance is related to not only the quality of films but also the preferred growth orientation. The Te-Sb2Se3 film annealed at 325 °C showed a maximum photocurrent density of 1.91 mA/cm2 with a light intensity of 10.5 mW/cm2 at a bias of 1.4 V. The fast response and recovery speed confirms the great potential of these films as excellent photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA