Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Hepatology ; 75(4): 847-865, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626132

RESUMO

BACKGROUND AND AIMS: The mechanism underlying HCC metastasis remains unclear, many oncogenes are known to regulate this process. However, the role of alternative splicing (AS) in pro-metastatic HCC is poorly understood. APPROACH AND RESULTS: By performing RNA sequencing on nine pairs of primary HCC tissues with extrahepatic metastasis (EHMH) and nine pairs of metastasis-free HCC (MFH) tissues, we depicted the AS landscape in HCC and found a higher frequency of AS events in EHMH compared with MFH. Moreover, 28 differentially expressed splicing regulators were identified in EHMH compared with MFH. Among these, DEAD-box RNA helicase 17 (DDX17) was significantly up-regulated in EHMH and was strongly associated with patient outcome. Functional studies indicated that DDX17 knockout inhibited the degradation of the extracellular matrix, and diminished the invasive ability of HCC cells. A significant reduction in lung metastasis induced by DDX17 deficiency was also demonstrated in a diethylnitrosamine-induced DDX17HKO mouse model. Mechanistically, high DDX17 induced intron 3 retention of PXN-AS1 and produced a transcript (termed PXN-AS1-IR3). The transcript PXN-AS1-IR3 acted as an important promoter of HCC metastasis by inducing MYC transcription activation via recruiting the complex of testis expressed 10 and p300 to the MYC enhancer region, which led to transcriptional activation of several metastasis-associated downstream genes. Finally, the PXN-AS1-IR3 level was significantly higher in serum and HCC tissues with extrahepatic metastasis. CONCLUSIONS: DDX17 and PXN-AS1-IR3 act as important metastatic promoters by modulating MYC signaling, suggesting that DDX17 and PXN-AS1-IR3 may be potential prognostic markers for metastatic HCC.


Assuntos
Carcinoma Hepatocelular , RNA Helicases DEAD-box , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Processamento Alternativo , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , MicroRNAs/genética , Metástase Neoplásica , Oncogenes , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Transdução de Sinais
2.
Eur J Clin Microbiol Infect Dis ; 41(9): 1155-1163, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927536

RESUMO

Coronavirus disease 2019 (COVID-19) is a global public health concern. The purpose of this study was to investigate the association between genetic variants and SARS-CoV-2 infection and the COVID-19 severity in Chinese population. A total of 256 individuals including 87 symptomatic patients (tested positive for SARS-CoV-2), 84 asymptomatic cases, and 85 close contacts of confirmed patients (tested negative for SARS-CoV-2) were recruited from February 2020 to May 2020. We carried out the whole exome genome sequencing between the individuals and conducted a genetic association study for SARS-CoV-2 infection and the COVID-19 severity. In total, we analyzed more than 100,000 single-nucleotide polymorphisms. The genome-wide association study suggested potential correlation between genetic variability in POLR2A, ANKRD27, MAN1A2, and ERAP1 genes and SARS-CoV-2 infection susceptibility. The most significant gene locus associated with SARS-CoV-2 infection was located in POLR2A (p = 5.71 × 10-6). Furthermore, genetic variants in PCNX2, CD200R1L, ZMAT3, PLCL2, NEIL3, and LINC00700 genes (p < 1 × 10-5) were closely associated with the COVID-19 severity in Chinese population. Our study confirmed that new genetic variant loci had significant association with SARS-CoV-2 infection and the COVID-19 severity in Chinese population, which provided new clues for the studies on the susceptibility of SARS-CoV-2 infection and the COVID-19 severity. These findings may give a better understanding on the molecular pathogenesis of COVID-19 and genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


Assuntos
COVID-19 , Aminopeptidases , COVID-19/epidemiologia , COVID-19/genética , China/epidemiologia , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Antígenos de Histocompatibilidade Menor , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética
3.
J Hepatol ; 74(3): 522-534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32987030

RESUMO

BACKGROUND & AIMS: Current antiviral therapies help keep HBV under control, but they are not curative, as they are unable to eliminate the intracellular viral replication intermediate termed covalently closed circular DNA (cccDNA). Therefore, there remains an urgent need to develop strategies to cure CHB. Functional silencing of cccDNA is a crucial curative strategy that may be achieved by targeting the viral protein HBx. METHODS: We screened 2,000 small-molecule compounds for their ability to inhibit HiBiT-tagged HBx (HiBiT-HBx) expression by using a HiBiT lytic detection system. The antiviral activity of a candidate compound and underlying mechanism of its effect on cccDNA transcription were evaluated in HBV-infected cells and a humanised liver mouse model. RESULTS: Dicoumarol, an inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1), significantly reduced HBx expression. Moreover, dicoumarol showed potent antiviral activity against HBV RNAs, HBV DNA, HBsAg and HBc protein in HBV-infected cells and a humanised liver mouse model. Mechanistic studies demonstrated that endogenous NQO1 binds to and protects HBx protein from 20S proteasome-mediated degradation. NQO1 knockdown or dicoumarol treatment significantly reduced the recruitment of HBx to cccDNA and inhibited the transcriptional activity of cccDNA, which was associated with the establishment of a repressive chromatin state. The absence of HBx markedly blocked the antiviral effect induced by NQO1 knockdown or dicoumarol treatment in HBV-infected cells. CONCLUSIONS: Herein, we report on a novel small molecule that targets HBx to combat chronic HBV infection; we also reveal that NQO1 has a role in HBV replication through the regulation of HBx protein stability. LAY SUMMARY: Current antiviral therapies for hepatitis B are not curative because of their inability to eliminate covalently closed circular DNA (cccDNA), which persists in the nuclei of infected cells. HBV X (HBx) protein has an important role in regulating cccDNA transcription. Thus, targeting HBx to silence cccDNA transcription could be an important curative strategy. We identified that the small molecule dicoumarol could block cccDNA transcription by promoting HBx degradation; this is a promising therapeutic strategy for the treatment of chronic hepatitis B.


Assuntos
Antivirais/administração & dosagem , DNA Circular/metabolismo , Dicumarol/administração & dosagem , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , DNA Circular/isolamento & purificação , Modelos Animais de Doenças , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/virologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/genética , Transfecção , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
4.
Clin Sci (Lond) ; 135(12): 1505-1522, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34128977

RESUMO

Chronic hepatitis B virus (HBV) infection is a significant public health burden worldwide. HBV covalently closed circular DNA (cccDNA) organized as a minichromosome in nucleus is responsible for viral persistence and is the key obstacle for a cure of chronic hepatitis B (CHB). Recent studies suggest cccDNA transcription is epigenetically regulated by histone modifications, especially histone acetylation and methylation. In the present study, we identified transcriptionally active histone succinylation (H3K122succ) as a new histone modification on cccDNA minichromosome by using cccDNA ChIP-Seq approach. Silent mating type information regulation 2 homolog 7 (SIRT7), as an NAD+-dependent histone desuccinylase, could bind to cccDNA through interaction with HBV core protein where it catalyzed histone 3 lysine 122 (H3K122) desuccinylation. Moreover, SIRT7 acts cooperatively with histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) and SET domain containing 2 (SETD2) to induce silencing of HBV transcription through modulation of chromatin structure. Our data improved the understanding of histone modifications of the cccDNA minichromosome, thus transcriptional silencing of cccDNA may represent a novel antiviral strategy for the prevention or treatment of HBV infection.


Assuntos
Catálise , DNA Circular/metabolismo , Histona Metiltransferases/genética , Histonas/metabolismo , Sirtuínas/metabolismo , DNA Viral/genética , Hepatite B/prevenção & controle , Hepatite B/terapia , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/prevenção & controle , Humanos , Sirtuínas/genética , Transcrição Gênica/genética , Replicação Viral/genética
5.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32382737

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Técnicas Imunoenzimáticas/métodos , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Adulto , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Medições Luminescentes , Masculino , Pessoa de Meia-Idade , Pandemias , Peptídeos/imunologia , Pneumonia Viral/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade , Proteínas Virais/imunologia
6.
Hepatology ; 69(5): 1885-1902, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30614547

RESUMO

Hepatitis B virus (HBV) infection is a common infectious disease, in which nuclear covalently closed circular DNA (cccDNA) plays a key role in viral persistence, viral reactivation after treatment withdrawal, and drug resistance. A recent genome-wide association study has identified that the ubiquitin conjugating enzyme E2 L3 (UBE2L3) gene is associated with increased susceptibility to chronic HBV (CHB) infection in adults. However, the association between UBE2L3 and children with CHB and the underlying mechanism remain unclear. In this study, we performed two-stage case-control studies including adults and independent children in the Chinese Han population. The rs59391722 allele in the promoter of the UBE2L3 gene was significantly associated with HBV infection in both adults and children, and it increased the promoter activity of UBE2L3. Serum UBE2L3 protein levels were positively correlated with HBV viral load and hepatitis B e antigen (HBeAg) levels in children with CHB. In an HBV infection cell model, UBE2L3 knockdown significantly reduced total HBV RNAs, 3.5-kb RNA, as well as cccDNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and human primary hepatocytes. A mechanistic study found that UBE2L3 maintained cccDNA stability by inducing proteasome-dependent degradation of apolipoprotein B mRNA editing enzyme catalytic subunit 3A, which is responsible for the degradation of HBV cccDNA. Moreover, interferon-α (IFN-α) treatment markedly decreased UBE2L3 expression, while UBE2L3 silencing reinforced the antiviral activity of IFN-α on HBV RNAs, cccDNA, and DNA. rs59391722 in UBE2L3 was correlated with HBV DNA suppression and HBeAg loss in response to IFN-α treatment of children with CHB. Conclusion: These findings highlight a host gene, UBE2L3, contributing to the susceptibility to persistent HBV infection; UBE2L3 may be involved in IFN-mediated viral suppression and serve as a potential target in the prevention and treatment of HBV infection.


Assuntos
Citidina Desaminase/metabolismo , Hepatite B Crônica/genética , Enzimas de Conjugação de Ubiquitina/genética , Desaminases APOBEC , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA Circular , Predisposição Genética para Doença , Células Hep G2 , Hepatite B Crônica/tratamento farmacológico , Humanos , Lactente , Interferon-alfa/uso terapêutico , Polimorfismo de Nucleotídeo Único , Enzimas de Conjugação de Ubiquitina/metabolismo , Replicação Viral
7.
Clin Sci (Lond) ; 134(22): 3007-3022, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33103728

RESUMO

Hepatitis B virus (HBV) infection remains a global public health problem. Nearly 257 million people worldwide have been infected with HBV, resulting in 887,000 people dying of cirrhosis or liver cancer caused by chronic hepatitis B (CHB) annually. Therefore, identification of new targets against HBV is urgently needed. Long noncoding RNAs (LncRNAs) have gained widespread attention in recent years due to their function in cancer, inflammation and other diseases. Notably, a growing number of lncRNAs have been found to play a role in HBV development. In the present study, we first identified a famous lncRNA, HOTAIR, which was significantly up-regulated in HBV-infected cells and PBMCs from CHB patients. Furthermore, we evaluated the clinical relevance of HOTAIR in 20 CHB patients and found that higher levels of HOTAIR expression were associated with higher ALT/AST levels and were positively correlated with HBsAg and HBV DNA levels. In addition, functional analysis showed that HOTAIR promoted HBV transcription and replication by elevating the activities of HBV promoters via modulation of the levels of cccDNA-bound SP1. In conclusion, our study reveals that HOTAIR expression is correlated with the clinicopathological and physiological characteristics of HBV. Thus, HOTAIR may serve as a novel HBV diagnostic and therapeutic biomarker based on its ability to facilitate HBV transcription and replication.


Assuntos
Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/metabolismo , Transcrição Viral/genética , Replicação Viral/genética , Adulto , Feminino , Redes Reguladoras de Genes , Inativação Gênica , Células Hep G2 , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Humanos , Masculino , Regiões Promotoras Genéticas/genética
8.
Hepatology ; 68(4): 1260-1276, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29624717

RESUMO

Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA), which serves as a template for HBV RNA transcription, is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified silent mating type information regulation 2 homolog 3 (SIRT3) as a host factor restricting HBV transcription and replication by screening seven members of the sirtuin family, which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA, as well as replicative intermediate DNA in HBV-infected HepG2-Na+ /taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. A mechanistic study found that nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9. Importantly, occupancy of SIRT3 on cccDNA could increase the recruitment of histone methyltransferase suppressor of variegation 3-9 homolog 1 to cccDNA and decrease recruitment of SET domain containing 1A, leading to a marked increase of trimethyl-histone H3 (Lys9) and a decrease of trimethyl-histone H3 (Lys4) on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor Yin Yang 1 to cccDNA. Finally, hepatitis B viral X protein could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. CONCLUSION: SIRT3 is a host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase; these data provide a rationale for the use of SIRT3 activators in the prevention or treatment of HBV infection. (Hepatology 2018).


Assuntos
DNA Viral/genética , Epigênese Genética/genética , Hepatite B/genética , Domínios PR-SET/genética , Sirtuína 3/genética , Replicação Viral/genética , DNA Complementar/genética , Hepatite B/fisiopatologia , Vírus da Hepatite B/genética , Histona Metiltransferases/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
9.
Cell Commun Signal ; 17(1): 168, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842909

RESUMO

BACKGROUND: Our previous study has demonstrated that NAD(P)H: quinone oxidoreductase 1 (NQO1) is significantly upregulated in human liver cancer where it potentiates the apoptosis evasion of liver cancer cell. However, the underlying mechanisms of the oncogenic function of NQO1 in HCC have not been fully elucidated. METHODS: Expression of NQO1, SIRT6, AKT and X-linked inhibitor of apoptosis protein (XIAP) protein were measured by western blotting and immunohistochemistry. Additionally, the interaction between NQO1 and potential proteins were determined by immunoprecipitation assays. Furthermore, the effect of NQO1 and SIRT6 on tumor growth was determined in cell model and orthotopic tumor implantation model. RESULTS: We found that NQO1 overexpression in HCC enhanced SIRT6 protein stability via inhibiting ubiquitin-mediated 26S proteasome degradation. High level of SIRT6 reduced acetylation of AKT which resulted in increased phosphorylation and activity of AKT. Activated AKT subsequently phosphorylated anti-apoptotic protein XIAP at Ser87 which determined its protein stability. Reintroduction of SIRT6 or AKT efficiently rescued NQO1 knock-out-mediated inhibition of growth and induction of apoptosis. In orthotopic mouse model, NQO1 knock-out inhibited tumor growth and induced apoptosis while this effect was effectively rescued by SIRT6 overexpression or MG132 treatment partially. CONCLUSIONS: Collectively, these results reveal an oncogenic function of NQO1 in sustaining HCC cell proliferation through SIRT6/AKT/XIAP signaling pathway.


Assuntos
Apoptose , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sirtuínas/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia , NAD(P)H Desidrogenase (Quinona)/deficiência , Fosforilação , Estabilidade Proteica , Transdução de Sinais , Regulação para Cima
10.
J Gen Virol ; 99(5): 645-654, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29561254

RESUMO

Hepatitis B virus (HBV) infection is a major health problem worldwide. Interleukin-35 (IL-35) is a definite immunosuppressive cytokine belonging to the IL-12 family. Nevertheless, the role of IL-35 in HBV replication remains elusive. In this study, we found that the level of HBV DNA replicative intermediates detected by qPCR and Southern blotting analysis was significantly increased by rhIL-35 in a dose-dependent manner. Moreover, HBV 3.5 kb mRNA levels were up-regulated by rhIL-35. The HBV core protein level as well as the HBsAg and HBeAg secretion levels were also increased by rhIL-35. Moreover, a mechanistic study demonstrated that IL-35 promoted HBV replication by enhancing the HBV core promoter activity. Importantly, hepatocyte nuclear factor 4α (HNF4α) was probably the target of IL-35. Mutation of the HNF4α-binding site on HBV core promoter or silencing HNF4α abolished the enhancement of HBV replication induced by IL-35. Finally, rhIL-35 was able to increase HBV replication in HBV transgenic mice. Taken together, our findings demonstrated that IL-35 has a novel role in HBV replication.


Assuntos
Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Fator 4 Nuclear de Hepatócito/genética , Interleucinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Regulação da Expressão Gênica , Inativação Gênica , Células Hep G2 , Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , RNA Mensageiro , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Regulação para Cima
11.
Biochem Biophys Res Commun ; 496(3): 904-910, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29366781

RESUMO

Sirtuin 2 (SIRT2) is a class III histone deacetylase that has been implicated to promote HCC development. However, the functional role of SIRT2 in HBV is still unclear. In this study, we found that HBV could upregulate SIRT2 expression. Additionally, HBx could activate SIRT2 promoter to upregulate the mRNA and protein level of SIRT2. Furthermore, we found that SIRT2 could facilitate HBV transcription and replication. Finally, we demonstrated that upregulation of SIRT2 by HBx promoted hepatocarcinogenesis. In summary, our findings revealed a novel function of SIRT2 in HBV and HBV-mediated HCC. First, SIRT2 could promote HBV replication. And then HBx-elevated SIRT2 could enhance the transformation of HBV-mediated HCC. Those findings highlight the potential role of SIRT2 in HBV and HBV-mediated HCC by interaction with HBx.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Sirtuína 2/metabolismo , Replicação Viral/fisiologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Hepatite B/metabolismo , Hepatite B/virologia , Humanos , Neoplasias Hepáticas/patologia
12.
Int J Med Sci ; 15(12): 1356-1364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275764

RESUMO

Sirtuin 2 (SIRT2) is a nicotinamide adenine dinucleotide (NAD +)-dependent class III histone deacetylase. We have reported that HBx (hepatitis B virus X protein)-elevated SIRT2 promotes HBV replication and hepatocarcinogenesis. However, the potential anti-HBV effect of AGK2, a selective inhibitor of SIRT2, has not been reported. Here, the role of AGK2 on HBV replication was examined in the HepAD38 and HepG2-NTCP cell lines. The HBV genome was stably integrated in HepAD38 cell line which expresses HBV under the control of tetracycline. The HepG2-NTCP cells expressing the sodium taurocholate cotransporting polypeptide (NTCP) receptor are susceptible to HBV infection. We found that AGK2 exhibited a robust anti-HBV activity with minimal hepatotoxicity. AGK2 inhibited the expression of HBV total and 3.5kb RNAs, DNA replicative intermediates and HBV core protein (HBc). Moreover, AGK2 treatment suppressed the secretion of the hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg). Importantly, AGK2 treatment inhibited serum HBV DNA, HBeAg and HBsAg levels as well as hepatic HBV DNA, RNA and HBc in the HBV transgenic mice. The results indicated that AGK2, as a SIRT2 inhibitor, might be a new therapeutic option for controlling HBV infection.


Assuntos
Furanos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Quinolinas/farmacologia , Sirtuína 2/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Células Hep G2 , Hepatite B/tratamento farmacológico , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Humanos , Camundongos
13.
Int J Med Sci ; 15(2): 188-194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333103

RESUMO

Backgrounds: As one of the major public health problems, the hepatitis B virus (HBV) infection would activate the immune system. The outcome of HBV infection was affect significantly by the interactions between HBV and host immune response. Interleukins play important role in anti-viral immunity. Here we investigated the role of interleukin-35 (IL-35) in chronic HBV infection patients. Methods/Results: Serum IL-35 in 72 chronic hepatitis B virus infection patients and 41 healthy control subjects were analyzed by ELISA assay. The mRNA level of IL-35 in PBMCs was determined by RT-qPCR. In this study, we found that both protein and mRNA levels of IL-35 were significantly decreased in chronic HBV patients compared to the healthy controls. Furthermore, the statistical analysis found that serum IL-35 was significantly associated with HBV DNA (P =0.0158), ALT (P =0.0003), AST (P =0.0216), TB (P =0.0270) and AFP (P =0.0369). Importantly, correlation analysis also found that serum IL-35 level was negatively correlated with HBV DNA copies, ALT, AST, TB and AFP. Meanwhile, IL-35 treatment inhibited the level of HBV DNA, HBsAg and HBeAg in HepAD38 cells. Conclusion: Our study identified that IL-35 may be a novel marker associated with HBV infection and hepatocytes injury. These data suggested the potential use of IL-35 in the HBV treatment.


Assuntos
Hepatite B Crônica/sangue , Interleucinas/sangue , Adolescente , Adulto , Idoso , Alanina Transaminase/sangue , Estudos de Casos e Controles , DNA Viral/sangue , Feminino , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/etiologia , Humanos , Interleucinas/genética , Interleucinas/farmacologia , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/farmacologia , alfa-Fetoproteínas/metabolismo
14.
Biochem Biophys Res Commun ; 485(4): 713-719, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238784

RESUMO

SIRT6 is a class III histone deacetylase that has been implicated in HCC development. We previously reported that SIRT6 potentiated apoptosis evasion in hepatocellular carcinoma by inhibiting both Bax expression and mitochondrial translocalization. However, the mechanism underlying SIRT6-mediated inhibition of Bax mitochondrial localization remains elusive. In this study, we found that although SIRT6 had no effect on the expression level of Ku70, SIRT6 could interact with Ku70 and deacetylate it. The increased acetylation of Ku70 in SIRT6-depleted cells disrupt its interaction with Bax, which finally resulted in Bax mitochondrial translocalization. Furthermore, lysine K542 on Ku70 was the target for deacetylation by SIRT6. Ku70K542Q mutation abolished suppression of association between Ku70 and Bax and caused redistribution of Bax to the cytosol in SIRT6-depleted cells. Finally, Ku70K542Q mutation could reversed the inhibition of growth and apoptosis promotion mediated by SIRT6 silencing. Together, our findings revealed SIRT6 could block the mitochondrial translocation of Bax and decrease the apoptotic ratio of HCC cells by deacetylation of Ku70. SIRT6 may serve as a promising target for developing targeted therapies for HCC in the future.


Assuntos
Apoptose , Autoantígeno Ku/metabolismo , Sirtuínas/metabolismo , Proteína X Associada a bcl-2/metabolismo , Acetilação , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Autoantígeno Ku/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisina/genética , Lisina/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mutação , Ligação Proteica , Transporte Proteico/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuínas/genética , Proteína X Associada a bcl-2/genética
15.
Arch Virol ; 161(3): 621-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26660162

RESUMO

We previously reported that SIRT1, an NAD(+)-dependent deacetylase belonging to the class III histone deacetylases, enhances hepatitis virus B (HBV) replication by targeting the transcription factor AP-1. However, the potential antiviral effects of nicotinamide, a SIRT1 inhibitor, have not yet been explored. In this study, we show that nicotinamide exhibits potent anti-HBV activity with little cytotoxicity. Nicotinamide suppressed both HBV DNA replicative intermediates and 3.5-kb mRNA expression. Moreover, nicotinamide treatment also suppressed core protein expression and the secretion of the hepatitis B surface antigen (HBsAg) and the hepatitis B e antigen (HBeAg) in HBV-expressing cell models. Importantly, nicotinamide treatment suppressed serum HBV DNA, HBsAg and HBeAg levels and liver HBV DNA in HBV-transgenic mice. Furthermore, using a dual-luciferase reporter assay, it was found that nicotinamide exhibited a marked inhibitory effect on the HBV core, SpI, SpII and X promoters, accompanied by decreased expression of the transcription factors AP-1, C/EBPα and PPARα. Therefore, nicotinamide suppresses HBV replication in vitro and in vivo by diminishing HBV promoter activity. This study highlights the potential application of nicotinamide in HBV therapy.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Sirtuína 1/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Camundongos Transgênicos , Niacinamida/toxicidade
16.
J Virol ; 88(5): 2442-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335313

RESUMO

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver cirrhosis and hepatocellular carcinoma. Nevertheless, the molecular mechanism of HBV replication remains elusive. SIRT1 is a class III histone deacetylase that is a structure component of the HBV cccDNA minichromosome. In this study, we found by using microarray-based gene expression profiling analysis that SIRT1 was upregulated in HBV-expressing cells. Gene silencing of SIRT1 significantly inhibited HBV DNA replicative intermediates, 3.5-kb mRNA, and core protein levels. In contrast, the overexpression of SIRT1 augmented HBV replication. Furthermore, SIRT1 enhanced the activity of HBV core promoter by targeting transcription factor AP-1. The c-Jun subunit of AP-1 was bound to the HBV core promoter region, as demonstrated by using a chromatin immunoprecipitation assay. Mutation of AP-1 binding site or knockdown of AP-1 abolished the effect of SIRT1 on HBV replication. Finally, SIRT1 inhibitor sirtinol also suppressed the HBV DNA replicative intermediate, as well as 3.5-kb mRNA. Our study identified a novel host factor, SIRT1, which may facilitate HBV replication in hepatocytes. These data suggest a rationale for the use of SIRT1 inhibitor in the treatment of HBV infection.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/fisiologia , Sirtuína 1/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Replicação Viral , Linhagem Celular , Expressão Gênica , Inativação Gênica , Genes Virais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Replicação Viral/efeitos dos fármacos
17.
J Exp Clin Cancer Res ; 43(1): 45, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326908

RESUMO

BACKGROUND: Metastasis is one of the leading cause contributes to treatment failure and poor prognosis of hepatocellular carcinoma (HCC) patients. The underlying mechanism of HCC metastasis remains to be determined. Although several RNA binding proteins (RBPs) have been found to participate in tumorigenesis and progression of liver cancer, the role of RBPs in HCC patients with extrahepatic metastases is poorly understood. METHODS: By performing RNA-seq of primary HCC tissues (including HCC with extrahepatic metastasis and those did not develop metastasis), we identified a set of HCC metastasis-associated RBPs candidates. Among which, ribosomal protein S7 (RPS7) was found to be remarkably increased in HCC tissues and be strongly related to HCC poor survival. Overexpression or CRISPR-Cas9-mediated knockout were applied to investigate the role of RPS7 on the metastasis-associated phenotypes of HCC cells. RNA sequencing, RIP, RNA-pull down, dual luciferase reporter assay, nascent RNA capture assay, and RNA decay and so on, were applied to reveal the underlying mechanism of RPS7 induced HCC metastasis. RESULTS: Gain- and loss- of function analyses revealed that RPS7 promoted HCC cells adhesion, migration and invasion capabilities, as well as lung metastasis. Mechanistically, we uncovered that lysyl oxidase-like 2 (LOXL2) was a critical downstream target of RPS7. RPS7 could stabilize LOXL2 mRNA by binding to AUUUA motifs in the 3155-3375 region of the 3'UTR of LOXL2 mRNA, thus increased LOXL2 expression via elevating LOXL2 mRNA abundance. Further research revealed that LOXL2 could accelerate focal adhesion formation through maintaining the protein stability of ITGB1 and activating ITGB1-mediated FAK/SRC signaling pathway, and thereby contribute to the pro-metastasis effect of RPS7. CONCLUSIONS: Taken together, our data reveal a novel function of RPS7 in HCC metastasis, also reveal the critical roles of the RPS7/LOXL2/ITGB1 axis in HCC metastasis and shed new light on the exploration of molecular drugs against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Ribossômicas , Humanos , Aminoácido Oxirredutases/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Ribossômicas/metabolismo , RNA , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
18.
Front Microbiol ; 13: 836446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663860

RESUMO

Chronic hepatitis B (CHB) virus infection is one of the leading causes of cirrhosis and liver cancer. Although the major drugs against CHB including nucleos(t)ide analogs and PEG-interferon can effectively control human hepatitis B virus (HBV) infection, complete cure of HBV infection is quite rare. Targeting host factors involved in the viral life cycle contributes to developing innovative therapeutic strategies to improve HBV clearance. In this study, we found that the mRNA and protein levels of SIRT2, a class III histone deacetylase, were significantly upregulated in CHB patients, and that SIRT2 protein level was positively correlated with HBV viral load, HBsAg/HBeAg levels, HBcrAg, and ALT/AST levels. Functional analysis confirmed that ectopic SIRT2 overexpression markedly increased total HBV RNAs, 3.5-kb RNA and HBV core DNA in HBV-infected HepG2-Na+/taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, SIRT2 silencing inhibited HBV transcription and replication. In addition, we found a positive correlation between SIRT2 expression and HBV RNAs synthesis as well as HBV covalently closed circular DNA transcriptional activity. A mechanistic study suggested that SIRT2 enhances the activities of HBV enhancer I/HBx promoter (EnI/Xp) and enhancer II/HBc promoter (EnII/Cp) by targeting the transcription factor p53. The levels of HBV EnI/Xp and EnII/Cp-bound p53 were modulated by SIRT2. Both the mutation of p53 binding sites in EnI/Xp and EnII/Cp as well as overexpression of p53 abolished the effect of SIRT2 on HBV transcription and replication. In conclusion, our study reveals that, in terms of host factors, a SIRT2-targeted program might be a more effective therapeutic strategy for HBV infection.

19.
Front Immunol ; 13: 871558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784274

RESUMO

HBV is strongly associated with HCC development and DEAD-box RNA helicase 17 (DDX17) is a very important member of the DEAD box family that plays key roles in HCC development by promoting cancer metastasis. However, the important role of DDX17 in the pathogenesis of HBV-related HCC remains unclear. In this study, we investigated the role of DDX17 in the replication of HBV and the development of HBV-associated HCC. Based on data from the GEO database and HBV-infected cells, we found that DDX17 was upregulated by the HBV viral protein X (HBx). Mechanistically, increased DDX17 expression promoted HBV replication and transcription by upregulating ZWINT. Further study showed that DDX17 could promote HBx-mediated HCC metastasis. Finally, the promotive effect of DDX17 on HBV and HBV-related HCC was confirmed in vivo. In summary, the results revealed the novel role of DDX17 in the replication of HBV and the metastasis of HBV-associated HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinogênese , Carcinoma Hepatocelular/etiologia , Transformação Celular Neoplásica , RNA Helicases DEAD-box/genética , Vírus da Hepatite B , Humanos , Neoplasias Hepáticas/etiologia
20.
Front Microbiol ; 13: 850087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033851

RESUMO

Hepatitis B virus (HBV) infection is still a serious public health problem worldwide. Antiviral therapies such as interferon and nucleos(t)ide analogs efficiently control HBV replication, but they cannot eradicate chronic hepatitis B (CHB) because of their incapacity to eliminate endocellular covalently closed circular DNA (cccDNA). Thus, there is a necessity to develop new strategies for targeting cccDNA. As cccDNA is difficult to clear, transcriptional silencing of cccDNA is a possible effective strategy. HBx plays a vitally important role in maintaining the transcriptional activity of cccDNA and it could be a target for blocking the transcription of cccDNA. To screen new drugs that may contribute to antiviral therapy, the ability of 2,000 small-molecule compounds to inhibit HBx was examined by the HiBiT lytic detection system. We found that the macrolide compound rapamycin, which is clinically used to prevent acute rejection after organ transplantation, could significantly reduce HBx protein expression. Mechanistic studies demonstrated that rapamycin decreased the stability of the HBx protein by promoting its degradation via the ubiquitin-proteasome system. Moreover, rapamycin inhibited HBV RNA, HBV DNA, and cccDNA transcription levels in HBV-infected cells. In addition, HBx deficiency abrogated the inhibition of cccDNA transcription induced by rapamycin. Similar results were also confirmed in a recombinant cccDNA mouse model. In summary, we report a new small-molecule, rapamycin, which targets HBx to block HBV cccDNA transcription and inhibit HBV replication. This approach can identify new strategies to cure CHB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA