Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Cell Biochem ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542599

RESUMO

Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.

2.
Biochem Biophys Res Commun ; 637: 276-285, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36410277

RESUMO

Myocardial Ischemic Injury is a serious threat to human health, and DJ-1 is involved in cardioprotection. The research intended to explore the effects and mechanism of DJ-1 to protect myocardium against ischemia injury. DJ-1 overexpression lentivirus vectors were transduced into the myocardium of SD rats and H9c2 cells, and an AMI model in vivo and a hypoxia model in vitro were established, respectively. Results showed that DJ-1 overexpression alleviated myocardial ischemia injury, as demonstrated by reduced the extent of myocardial infarction, improved cell survival, decreased LDH activity and CK-MB release. Furthermore, DJ-1 interacted with RACK1, activated AMPK/mTOR pathway, induced adaptive autophagy and protected the myocardium. However, RACK1 siRNA or compound C (an AMPK inhibitor) could weaken the above effect of DJ-1 on myocardium. In conclusion, DJ-1 could activate adaptive autophagy by the RACK1/AMPK/mTOR pathway and protect the myocardium against ischemia injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Traumatismos Cardíacos , Proteína Desglicase DJ-1 , Animais , Humanos , Ratos , Autofagia , Hipóxia , Isquemia , Miocárdio , Proteínas de Neoplasias , Ratos Sprague-Dawley , Receptores de Quinase C Ativada , Serina-Treonina Quinases TOR , Proteína Desglicase DJ-1/metabolismo
3.
FASEB J ; 35(4): e21485, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33709562

RESUMO

Cognitive dysfunction often occurs in diabetes mellitus patients. This study aimed to investigate the efficacy of melatonin (MLT) in improving diabetes-associated cognitive decline and the underlying mechanism involved. Type 2 diabetic mice and palmitic acid (PA)-stimulated BV-2 cells were treated by MLT, and the potential mechanisms among MLT, cognition, and autophagy were explored. The results showed that type 2 diabetic mice showed obvious learning and memory impairments in the Morris water maze test compared with normal controls, which could be ameliorated by MLT treatment. Meanwhile, MLT administration significantly improved neuroinflammation and regulated microglial apoptosis. Furthermore, autophagy inhibitor 3-methyladenine (3-MA) increased the microglial inflammation and apoptosis, indicating that the treatment effect of MLT was mediated by autophagy. Lastly, MLT treatment significantly decreased the levels of toll-like receptors 4 (TLR4), phosphorylated-protein kinase B (Akt), and phosphorylated-mechanistic target of rapamycin (mTOR), indicating that blocking TLR4/Akt/mTOR pathway might be an underlying basis for the anti-inflammatory and anti-apoptosis effects of MLT. Collectively, our study suggested that MLT could improve learning and memory in type 2 diabetic mice by activating autophagy via the TLR4/Akt/mTOR pathway, thereby inhibiting neuroinflammation and microglial apoptosis.


Assuntos
Disfunção Cognitiva/prevenção & controle , Melatonina/farmacologia , Microglia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
4.
Mol Cell Biochem ; 477(7): 1931-1946, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35357607

RESUMO

The objective of this study was to identify different transcriptome expression profiles involved in the pathogenesis of diabetic nephropathy (DN) and to illustrate the diagnostic and therapeutic potential of mRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in DN progression. The participants were divided into four groups: normoalbuminuria (group DM), microalbuminuria (group A2), macroalbuminuria (group A3) and healthy controls (group N). There were three individuals in each group for sequencing. Transcriptome sequencing analysis was performed on the peripheral blood of all the participants to identify the differential expression of mRNAs, lncRNAs, and circRNAs between intervention groups and controls. The functional enrichment analysis, the short time-series expression miner (STEM) program, and the miRNA-circRNA-mRNA network were further conducted. To verify the reproducibility of transcriptome sequencing, 10 and 30 blood samples were collected from the control and diseased groups, respectively. Four candidate biomarkers were selected from differentially expressed circRNAs (circ_0005379, circ_0002024, and circ_0000567, and circ_0001017) and their concentrations in the blood were measured using quantitative PCR (qPCR). In the comparison of A2 with N, 549 mRNAs, 1259 lncRNAs, and 12 circRNAs were screened. In the comparison of A3 with N, 1217 mRNAs, 1613 lncRNAs, and 24 circRNAs were screened. Moreover, in the comparison of diabetes mellitus (DM) with N, 948 mRNAs, 1495 lncRNAs, and 25 circRNAs were screened. Functional enrichment analysis showed that differentially expressed mRNAs were related to insulin secretion, insulin resistance, and inflammation, while differentially expressed lncRNAs were mainly associated with crossover junction endodeoxyribonuclease activity. In STEM analysis, a total of 481 mRNAs and 152 differential expression circRNAs showed a significant tendency. The key relationships in the miRNA-circRNA-mRNA network were identified, such as hsa-miR-103a-3p-circ_0005379-PTEN, hsa-miR-497-5p-circ_0002024-IGF1R and hsa-miR-1269a-circ_0000567-SOX6. In addition, qPCR showed consistent results with RNA sequencing. We found that differentially expressed mRNAs, lncRNAs, and circRNAs participated in DN development. Circ_0005379, circ_0002024, and circ_0000567 could be adopted as potential biomarkers for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , RNA Longo não Codificante , Biomarcadores , Nefropatias Diabéticas/genética , Humanos , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transcriptoma
5.
Artigo em Inglês | MEDLINE | ID: mdl-31844015

RESUMO

The expression of the blaKPC gene plays a key role in carbapenem resistance in Enterobacteriaceae However, the genetic regulators of the blaKPC gene have not been completely elucidated, especially the genes in Tn3-Tn4401 chimeras. Two novel Tn3-Tn4401 chimera isoforms were characterized in our hospital, isoform A (CTA), which harbors a 121-bp deletion containing the PX promoter and was present in 22.6% (54/239) of isolates, and isoform C (CTC), which harbors a 624-bp insertion and a P1 promoter deletion and was present in only 1 isolate. The carbapenem MICs of both isoforms were 2-fold or more higher than those of the wild type (Tn3-Tn4401 chimera, CTB), and blaKPC was most highly expressed in CTA. Bioinformatics and 5' rapid amplification of cDNA ends (5' RACE) experiments indicated a novel strong putative promoter, PY, at the 3' end of the ISKpn8 gene. PY mutation nearly abrogated blaKPC expression (P < 0.01) and restored carbapenem susceptibility in all 3 isoforms. Although the mutation of PX or P1 halved blaKPC expression in CTB (P < 0.05), PX deletion caused a 68% increase in blaKPC expression (P = 0.037) in CTA. The level of blaKPC mRNA in CTC was 8-fold higher than that in InCTC, which harbors P1 (P = 0.011). These results suggest that PY is a core promoter of the blaKPC gene in the chimeras and that the deletion of the PX and P1 promoters enhanced gene expression in CTA and CTC, respectively.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Plasmídeos/química , beta-Lactamases/genética , Sequência de Bases , Quimerismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Klebsiella oxytoca/efeitos dos fármacos , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , beta-Lactamases/metabolismo
6.
BMC Infect Dis ; 16: 34, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823075

RESUMO

BACKGROUND: The occurrence of non-contiguous, multiple, and remote involvement tuberculous spondylitis is rare. The clinical presentation in patients with multifocal musculoskeletal tuberculosis may closely mimic that in patients with multiple bone metastases, which makes the accurate clinical diagnosis challenging. Herein, we report a multifocal musculoskeletal tuberculosis case that was misdiagnosed for 8 months as multiple bone metastases. CASE PRESENTATION: A 63-year-old male farmer of Chinese Han ethnicity presented to us with pain in left side of the neck, right side of the chest and the back for 10 months without typical tuberculosis symptoms. His past medical history, the CT and fluoroscopy-guided biopsy were negative for tuberculosis. Interferon gamma by T-SPOT was also negative. Radiological findings including CT, MRI and PET-CT suggested that the patient had multiple metastases. Accordingly, the patient was misdiagnosed as having musculoskeletal tumors until a swelling under the right nipple ulcerated. The smear test for acid-fast bacilli and the PCR test for TB-DNA of the pus from the swollen area were both positive, leading to the final correct diagnosis of musculoskeletal tuberculosis. CONCLUSION: The proper diagnosis of musculoskeletal tuberculosis is clinically challenging due to Mycobacterium tuberculosis variants involved and atypical presentations, especially when the lesions are multiple. Our findings indicate that multiple tuberculous spondylitis must be considered in the differential diagnosis of multiple musculoskeletal lesions.


Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Tuberculose da Coluna Vertebral/diagnóstico , Antituberculosos/uso terapêutico , Neoplasias Ósseas/diagnóstico , DNA Bacteriano/análise , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Reação em Cadeia da Polimerase , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Tuberculose da Coluna Vertebral/tratamento farmacológico , Tuberculose da Coluna Vertebral/microbiologia
7.
Mol Cell Proteomics ; 13(1): 372-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129315

RESUMO

Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins.


Assuntos
Arginina/metabolismo , Encéfalo/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos/genética , Animais , Arginina/genética , Cromatografia Líquida , Células HCT116 , Humanos , Lisina/genética , Metilação , Camundongos , Espectrometria de Massas em Tandem
8.
J Cell Physiol ; 230(9): 2233-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25655684

RESUMO

TSH/TSHR signaling plays a role in the regulation of lipid metabolism in adipocytes. However, the precise mechanisms are not known. In the present study, we determined the effect of TSH on fatty acid synthase (FASN) expression, and explored the underlying mechanisms. In vitro, TSH reduced FASN expression in both mRNA and protein levels in mature adipocytes and was accompanied by protein kinase A (PKA) activation, cAMP-response element binding protein (CREB) phosphorylation, as well as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2 -terminal kinase (JNK) activation. TSH-induced downregulation of FASN was partially abolished by inhibition of PKA and ERK, but not JNK. TSHR and FASN expression in visceral tissue was significantly increased in C57BL/6 mice with diet-induced obesity compared with control animals, whereas thyroid TSHR expression was normal. These findings suggest that activation of TSHR directly inhibits FASN expression in mature adipocytes, possibly mediated by PKA and ERK. In obese animals, this function of TSHR seems to be counteracted. The precise mechanisms need further investigation.


Assuntos
Adipócitos/metabolismo , Ácido Graxo Sintase Tipo I/genética , Obesidade/enzimologia , Receptores da Tireotropina/metabolismo , Tireotropina/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Obesidade/patologia , Fosforilação , RNA Mensageiro/biossíntese , Receptores da Tireotropina/genética , Transdução de Sinais/genética , Glândula Tireoide/metabolismo , Tireotropina/genética
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 488-493, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38952087

RESUMO

Objective To identify immune-related transcription factors (TFs) in renal glomeruli and tubules from diabetic kidney disease (DKD) patients by bioinformatics analysis. Methods Gene expression datasets from GEO (GSE30528, GSE30529) and RNA sequencing (RNA-seq) data from the Karolinska Kidney Research Center were used. Gene set enrichment analysis (GSEA) was conducted to examine differences in immune-related gene expression in the glomeruli and tubules (DKD) patients. To identify immune-related genes (IRGs) and TFs, differential expression analysis was carried out using the Limma and DESeq2 software packages. Key immune-related TFs were pinpointed through co-expression analysis. The interaction network between TFs and IRGs was constructed using the STRING database and Cytoscape software. Furthermore, the Nephroseq database was employed to investigate the correlation between the identified TFs and clinical-pathological features. Results When compared to normal control tissues, significant differences in the expression of immune genes were observed in both the glomeruli and tubules of individuals with Diabetic Kidney Disease (DKD). Through differential and co-expression analysis, 50 immune genes and 9 immune-related transcription factors (TFs) were identified in the glomeruli. In contrast, 131 immune response genes (IRGs) and 41 immune-related TFs were discovered in the renal tubules. The protein-protein interaction (PPI) network highlighted four key immune-related TFs for the glomeruli: Interferon regulatory factor 8 (IRF8), lactotransferrin (LTF), CCAAT/enhancer binding protein alpha (CEBPA), and Runt-related transcription factor 3 (RUNX3). For the renal tubules, the key immune-related TFs were FBJ murine osteosarcoma viral oncogene homolog B (FOSB), nuclear receptor subfamily 4 group A member 1 (NR4A1), IRF8, and signal transducer and activator of transcription 1 (STAT1). These identified TFs demonstrated a significant correlation with the glomerular filtration rate (GFR), highlighting their potential importance in the pathology of DKD. Conclusion Bioinformatics analysis identifies potential genes associated with DKD pathogenesis and immune dysregulation. Further validation of the expression and function of these genes may contribute to immune-based therapeutic research for DKD.


Assuntos
Biologia Computacional , Nefropatias Diabéticas , Fatores de Transcrição , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Fatores de Transcrição/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Glomérulos Renais/imunologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Redes Reguladoras de Genes , Túbulos Renais/imunologia , Túbulos Renais/metabolismo
10.
World J Clin Cases ; 12(10): 1772-1777, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38660073

RESUMO

BACKGROUND: Purpureocillium lilacinum (P. lilacinum) is a saprophytic fungus widespread in soil and vegetation. As a causative agent, it is very rarely detected in humans, most commonly in the skin. CASE SUMMARY: In this article, we reported the case of a 72-year-old patient with chronic lymphocytic leukemia who was admitted with cough and fever. Computed tomography revealed an infection in the right lower lobe. Bronchoalveolar lavage fluid culture and metagenomic next-generation sequencing were ultimately confirmed to have a pulmonary infection with P. lilacinum. She was eventually discharged with good outcomes after treatment with isavuconazole. CONCLUSION: Pulmonary infection with P. lilacinum was exceedingly rare. While currently there are no definitive therapeutic agents, there are reports of high resistance to amphotericin B and fluconazole and good sensitivity to second-generation triazoles. The present report is the first known use of isavuconazole for pulmonary P. lilacinum infection. It provides new evidence for the characterization and treatment of clinical P. lilacinum lung infections.

11.
Mol Neurobiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954252

RESUMO

Spinal cord injury (SCI) is a severe traumatic condition in spinal surgery characterized by nerve damage in and below the injured area. Despite advancements in understanding the pathophysiology of SCI, effective clinical treatments remain elusive. Selenium compounds have become a research hotspot due to their diverse medicinal activities. Previously, our group synthesized a selenium-containing Compound 34# with significant anti-inflammatory activity. This study aimed to explore the anti-SCI effects of selenium-containing compounds using network pharmacology, molecular docking (MD), and ADMET methods. To identify SCI-related targets and those associated with 34#, GeneCards, NCBI, and SEA databases were employed. Eight overlapping targets were considered candidate targets, and molecular docking was performed using the PDB database and AutoDock software. The STRING database was used to obtain protein-protein interactions (PPI). Molecular dynamics simulation, MM/GBSA binding free energy score, and ADMET prediction were used to evaluate the potential targets and drug properties of 34#. Finally, experiments on NSC34 cells and mice were to verify the effects of 34# on SCI. Our results revealed eight candidate targets for 34# in the treatment of SCI. PPI and MD identified ADRB2 and HTR1F as the highest connectivity with 34#. ADMET analysis confirmed the low toxicity and safety of 34#. In vitro and in vivo models validated the anti-SCI effects. Our study elucidated candidate targets for alleviating SCI with 34#, explored PPI and target-related signaling pathways, and validated its anti-SCI effects. These findings enhance our understanding of 34#'s mechanism in treating SCI, positioning it as a potential candidate for SCI prevention.

12.
Eur J Pharmacol ; 971: 176496, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508437

RESUMO

Patients with myocardial infarction have a much worse prognosis when they have myocardial ischemia-reperfusion (I/R) injury. Further research into the molecular basis of myocardial I/R injury is therefore urgently needed, as well as the identification of novel therapeutic targets and linkages to interventions. Three cysteine residues are present in DJ-1 at amino acids 46, 53, and 106 sites, with the cysteine at position 106 being the most oxidation-prone. This study sought to understand how oxidized DJ-1(C106) contributes to myocardial I/R damage. Rats' left anterior descending branches were tied off to establish a myocardial I/R model in vivo. A myocardial I/R model in vitro was established via anoxia/reoxygenation (A/R) of H9c2 cells. The results showed that autophagy increased after I/R, accompanied by the increased expression of oxidized DJ-1 (ox-DJ-1). In contrast, after pretreatment with NAC (N-acetylcysteine, a ROS scavenger) or Comp-23 (Compound-23, a specific antioxidant binding to the C106 site of DJ-1), the levels of ox-DJ-1, autophagy and LDH release decreased, and cell survival rate increased. Furthermore, the inhibition of interaction between ox-DJ-1 and PTEN could increase PTEN phosphatase activity, inhibit the p-IKK/NF-κB/Beclin1 pathway, reduce injurious autophagy, and alleviate A/R injury. However, BA (Betulinic acid, a NF-κB agonist) was able to reverse the protective effects produced by Comp-23 pretreatment. In conclusion, ox-DJ-1 could activate detrimental autophagy through the PTEN/p-IKK/NF-κB/Beclin1 pathway and exacerbate myocardial I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , NF-kappa B , Animais , Humanos , Ratos , Autofagia , Proteína Beclina-1 , Cisteína/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase , Ratos Sprague-Dawley
13.
J Transl Med ; 11: 103, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23627732

RESUMO

BACKGROUND: Interactions between dendritic cells (DCs) and T cells play a critical role in the development of glomerulonephritis, which is a common cause of chronic kidney disease. DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), an immune-regulating molecule of the C-type lectin family, is mainly expressed on DCs and mediates DC adhesion and migration, inflammation, activation of primary T cells. DC-SIGN triggers immune responses and is involved in the immune escape of pathogens and tumours. In addition, ligation of DC-SIGN on DCs actively primes DCs to induce Tregs. Under certain conditions, DC-SIGN signalling may result in inhibition of DC maturation, by promoting regulatory T cell (Treg) function and affecting Th1/Th2 bias. METHODS: A rat model of nephrotoxic nephritis was used to investigate the therapeutic effects of an anti-lectin-epidermal growth factor (EGF) antibody on glomerulonephritis. DCs were induced by human peripheral blood mononuclear cells in vitro. The expression of DC surface antigens were detected using flow cytometry; the levels of cytokines were detected by ELISA and qPCR, respectively; the capability of DCs to stimulate T cell proliferation was examined by mixed lymphocyte reaction; PsL-EGFmAb targeting to DC-SIGN on DCs was identified by immunoprecipitation. RESULTS: Anti-Lectin-EGF antibody significantly reduced global crescent formation, tubulointerstitial injury and improved renal function impairment through inhibiting DC maturation and modulating Foxp3 expression and the Th1/Th2 cytokine balance in kidney. Binding of anti-Lectin-EGF antibody to DC-SIGN on human DCs inhibited DC maturation, increased IL-10 production from DCs and enhanced CD4+CD25+ Treg functions. CONCLUSIONS: Our results suggest that treatment with anti-Lectin-EGF antibody modulates DCs to suppressive DCs and enhances Treg functions, contributing to the attenuation of renal injury in a rat model of nephrotoxic nephritis.


Assuntos
Anticorpos/química , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/citologia , Fator de Crescimento Epidérmico/química , Lectinas Tipo C/metabolismo , Nefrite/metabolismo , Receptores de Superfície Celular/metabolismo , Linfócitos T Reguladores/citologia , Animais , Anticorpos Monoclonais/química , Antígenos de Superfície/metabolismo , Linfócitos T CD4-Positivos/citologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamação , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Rim/lesões , Masculino , Estrutura Terciária de Proteína , Ratos , Ratos Endogâmicos WKY , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Células Th1/citologia , Células Th2/citologia
14.
World J Clin Cases ; 11(14): 3311-3316, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37274037

RESUMO

BACKGROUND: Neisseria mucosa is a gram negative diplococcus belonging to the genus Neisseria found commonly in the upper respiratory tract. It is typically a commensal organism when it is parasitic on oral and nasal mucosa. To our knowledge, it does not cause disease in healthy individuals with normal immunity, but can be pathogenic in those with impaired immune function or change in bacterial colonization site. Neisseria mucosa has been reported to cause bacterial meningitis, conjunctivitis, pneumonia, endocarditis, peritonitis and urethritis. However, peritoneal dialysis-related peritonitis caused by Neisseria mucosa is extremely rare in clinical practice, which has not previously been reported in China. CASE SUMMARY: A 55-year-old female presented to the nephrology clinic with upper abdominal pain without apparent cause, accompanied by nausea, vomiting and diarrhea for two days. The patient had a history of Stage 5 chronic kidney disease for five years, combined with renal hypertension and renal anemia, and was treated with peritoneal dialysis for renal replacement therapy. The patient was subsequently diagnosed with peritoneal dialysis-related peritonitis. Routine examination of peritoneal dialysis fluid showed abdominal infection, and the results of microbial culture of the peritoneal dialysis fluid confirmed Neisseria mucosa. Imi-penem/ cilastatin 1.0 g q12h was added to peritoneal dialysis fluid for anti-infection treatment. After 24 d, the patient underwent upper extremity arteriovenous fistulation. One month later, the patient was discharged home in a clinically stable state. CONCLUSION: Peritonitis caused by Neisseria mucosa is rare. Patients with home-based self-dialysis cannot guarantee good medical and health conditions, and require education on self-protection.

15.
Eur J Pharmacol ; 951: 175748, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149277

RESUMO

Resveratrol (RES), a natural polyphenolic compound found in red wine and grape skins, has attracted significant attention due to its cardioprotective properties. DJ-1, a multifunctional protein that participated in transcription regulation and antioxidant defense, was shown to provide a significant protective impact in cardiac cells treated with ischemia-reperfusion. We created a myocardial ischemia-reperfusion (I/R) model in vivo and in vitro by ligating the left anterior descending branch of rats and subjecting H9c2 cells to anoxia/reoxygenation (A/R) to investigate whether RES reduces myocardial ischemia-reperfusion injury by upregulating DJ-1. We discovered that RES dramatically enhanced cardiac function in rats with I/R. Subsequently, we found that RES prevented the rise in autophagy (P62 degradation and LC3-II/LC3-I increase) induced by cardiac ischemia-reperfusion in vitro and in vivo. Notably, the autophagic agonist rapamycin (RAPA) eliminated RES-induced cardioprotective effects. In addition, Further data showed that RES significantly increased the expression of DJ-1 in the myocardium with the treatment of I/R. At the same time, pretreatment with RES reduced phosphorylation of MAPK/ERK kinase kinase 1 (MEKK1) and Jun N-terminal Kinase (JNK) stimulated by cardiac ischemia-reperfusion, and Beclin-1 mRNA and protein levels while decreasing lactate dehydrogenase (LDH) and improving cell viability. However, the lentiviral shDJ-1 and JNK agonist anisomycin disrupted the effects of RES. In summary, RES could inhibit autophagy against myocardial ischemia-reperfusion injury through DJ-1 modulation of the MEKK1/JNK pathway, providing a novel therapeutic strategy for cardiac homeostasis.


Assuntos
Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Resveratrol/uso terapêutico , Sistema de Sinalização das MAP Quinases , MAP Quinase Quinase Quinases/metabolismo , Autofagia , Miócitos Cardíacos , Apoptose
16.
Genes Genomics ; 44(6): 683-690, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235174

RESUMO

BACKGROUND: Cleidocranial dysplasia (CCD) is a rare genetic disorder affecting bone and cartilage development. Clinical features of CCD comprise short stature, delayed ossification of craniofacial structures with numerous Wormian bones, underdeveloped or aplastic clavicles and multiple dental anomalies. Several studies have revealed that CCD development is strongly linked with different mutations in runt-related transcription factor 2 (RUNX2) gene. OBJECTIVE: Identification and functional characterization of RUNX2 mutation associated with CCD. METHODS: We performed genetic testing of a patient with CCD using whole exome sequencing and found a novel RUNX2 frameshift mutation: c.1550delT in a sporadic case. We also compared the functional activity of the mutant and wild-type RUNX2 through immunofluorescence microscopy and osteocalcin promoter luciferase assay. RESULTS: We found a novel RUNX2 frameshift mutation, c.1550delT (p.Trp518Glyfs*60). Both mutant RUNX2 and wild-type RUNX2 protein were similarly confined in the nuclei. The novel mutation caused abrogative transactivation activity of RUNX2 on osteocalcin promoter. CONCLUSIONS: We explored a novel RUNX2 deletion/frameshift mutation in a sporadic CCD patient. This finding suggests that the VWRPY domain may play a key role in RUNX2 transactivation ability.


Assuntos
Displasia Cleidocraniana , Subunidade alfa 1 de Fator de Ligação ao Core , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Mutação da Fase de Leitura , Humanos , Mutação , Osteocalcina/genética
17.
Phytomedicine ; 97: 153920, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35026620

RESUMO

BACKGROUND: Liver damage is one of the most common complications in humans and animals after heat stress (HS). Sheng Mai San (SMS), a traditional Chinese medicine prescription that originated in the Jin Dynasty, exert a therapeutic effect on HS. However, how SMS prevents liver injury after heat exposure remains unknown. PURPOSE: This study aimed to investigate the pharmacological effect and molecular mechanisms of SMS on HS-induced liver injury. STUDY DESIGN: A comprehensive strategy via incorporating pharmacodynamics, targeted metabolomics, and molecular biology technology was adopted to investigate energy metabolism changes and the therapeutic mechanisms of SMS in HS-induced rat liver injury. METHODS: First, Sprague-Dawley rats were subjected to HS (38 °C/ 75% RH/ 2 h/ day) for 7 consecutive days to establish the HS model, and SMS was given orally for treatment 2 h before heat exposure. Thereafter, liver function and pathological changes in liver tissue were evaluated. Finally, the underlying mechanisms of SMS were determined using targeted energy metabolomics to comprehensively analyze the metabolic pathways and were further verified through Western-blot and qRT-PCR assays. RESULTS: Our results showed that SMS alleviated HS-induced liver dysfunction by reducing the alanine aminotransferase (ALT), aspartate aminotransferase (AST), and AST/ALT ratios in serum and improving hepatic pathological damage. Meanwhile, SMS suppressed inflammatory response, oxidative injury, and overexpression of heat shock proteins in liver tissue after heat exposure. With the help of targeted energy metabolomics, we found that SMS could effectively regulate glycolysis and tricarboxylic acid (TCA) cycle to relieve energy metabolism disorder. Furthermore, we confirmed that SMS can facilitate the phosphorylation of AMP-activated protein kinase (AMPK) to maintain mitochondrial homeostasis through a dynamin protein 1 (Drp1)-dependent mitophagy process. CONCLUSION: On the basis of energy metabolomics, the present study for the first time systematically illustrated the protective effect of SMS on HS-induced liver injury, and preliminarily confirmed that an AMPK-mediated Drp1-dependent mitophagy and mitochondria rebuilding process plays an important role in SMS intervention on HS-induced rat liver. Together, our study lends further support to the use of SMS in treating HS condition.


Assuntos
Proteínas Quinases Ativadas por AMP , Doença Hepática Crônica Induzida por Substâncias e Drogas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Dinaminas , Metabolismo Energético , Resposta ao Choque Térmico , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Nanomicro Lett ; 14(1): 169, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987834

RESUMO

Rechargeable aluminum-sulfur (Al-S) batteries have been considered as a highly potential energy storage system owing to the high theoretical capacity, good safety, abundant natural reserves, and low cost of Al and S. However, the research progress of Al-S batteries is limited by the slow kinetics and shuttle effect of soluble polysulfides intermediates. Herein, an interconnected free-standing interlayer of iron single atoms supported on porous nitrogen-doped carbon nanofibers (FeSAs-NCF) on the separator is developed and used as both catalyst and chemical barrier for Al-S batteries. The atomically dispersed iron active sites (Fe-N4) are clearly identified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption near-edge structure. The Al-S battery with the FeSAs-NCF shows an improved specific capacity of 780 mAh g-1 and enhanced cycle stability. As evidenced by experimental and theoretical results, the atomically dispersed iron active centers on the separator can chemically adsorb the polysulfides and accelerate reaction kinetics to inhibit the shuttle effect and promote the reversible conversion between aluminum polysulfides, thus improving the electrochemical performance of the Al-S battery. This work provides a new way that can not only promote the conversion of aluminum sulfides but also suppress the shuttle effect in Al-S batteries.

19.
Pathol Res Pract ; 225: 153561, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34325316

RESUMO

Long noncoding RNAs (lncRNAs) play crucial roles in the regulation of human thyroid cancer (TC), including papillary thyroid carcinoma (PTC); PTC is the most common pathological subtype of TC. To date, the expression, function, and mechanism of the lncRNA CASC15 in PTC remain unclear. The present study results showed that CASC15 was overexpressed in PTC tissues compared with normal tissues and acted as a potent oncogene to promote the proliferation and tumorigenesis of PTC cells both in vitro and in vivo. Mechanistic studies demonstrated that CASC15 could serve as an endogenous miRNA sponge to absorb and downregulate miR-7151-5p, thereby preventing the inhibition of WNT7A during PTC progression. Furthermore, the study demonstrated that CASC15 activated the WNT/ß­catenin signaling pathway by upregulating WNT7A in PTC. Taken together, our findings identified CASC15 as a potential diagnostic marker or therapeutic target for PTC progression. DATA AVAILABILITY: Please contact the corresponding author for a data request.


Assuntos
Proliferação de Células/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Via de Sinalização Wnt/genética , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
20.
Infect Drug Resist ; 13: 1163-1169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368107

RESUMO

OBJECTIVE: To investigate the molecular characteristics of carbapenem-resistant Enterobacteriaceae (CRE) from county hospitals in China. MATERIALS AND METHODS: Forty-three sequential non-duplicate CRE strains (including 33 Klebsiella pneumoniae isolates, 4 Enterobacter cloacae isolates, 3 Escherichia coli isolates, 1 Serratia marcescens, 1 Morganella morganii and 1 Citrobacter freundii) were collected from 4 county hospitals and 2 municipal hospitals. Antimicrobial susceptibility testing was conducted by broth microdilution method, using 3-aminophenylboronic acid and EDTA and the modified carbapenem inactivation method (mCIM) to screen phenotype of carbapenemase. ß-Lactamases were characterized by polymerase chain reaction (PCR) and DNA sequencing. The transferability of bla NDM-5 was investigated by transformation experiment. Clonal relatedness was evaluated by pulsed-field gel electrophoresis and multilocus sequence typing . RESULTS: The results of antimicrobial susceptibility testing indicated that 43 CRE strains were resistant to most of the antimicrobial agents, except tigecycline and colistin. Overall, 93%, 93%, and 97.7% of these strains were resistant to imipenem, meropenem, and ertapenem, respectively. PCR and DNA sequencing indicated that 67.4% (29/43) were bla KPC-2 positive isolates, in which 3.4% (1/29) was coproduced with bla NDM-1. In addition, 7.0% (3/43), 4.7% (2/43), 4.7% (2/43), 2.3% (1/43), 2.3% (1/43) were bla NDM-1, bla NDM-16, bla NDM-4, bla NDM-5, bla IMP-4 positive isolates, respectively. The 29 bla KPC-2-positive isolates belonged to 12 different PFGE type and designated as ST11 (n=20) and ST15, ST39, ST116, ST667, ST2245, ST2338. The plasmid bearing bla NDM-5 could be transferred into recipient E. coli J53 through transformation. CONCLUSION: Our study indicated the dissemination of CRE between the tertiary hospitals and secondary hospitals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA