Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Asian Nat Prod Res ; 25(11): 1068-1075, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37042744

RESUMO

A new terrein dimer named lichtheicol A (1) and a new meroterpene named lichtheiterpene A (2), were isolated from the mangrove endophytic fungus Lichtheimia sp. J2B1, together with 10 known compounds (3-12). The planar structures and absolute configurations of 1 and 2 were established by a combination of extensive spectroscopic data analyses and electronic circular dichroism (ECD) calculations. Compounds 4 and 5 exhibited marked inhibitory effects against butyrylcholinesterase (BuChE) with IC50 values of 0.71 and 0.53 µM, respectively.


Assuntos
Butirilcolinesterase , Fungos , Dicroísmo Circular , Estrutura Molecular
2.
Mar Drugs ; 16(11)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400349

RESUMO

Five new limonoids named thaigranatins A⁻E (1⁻5), containing a C1⁻O⁻C29 moiety, were isolated from seeds of the Thai Xylocarpus granatum, collected at the mangrove swamp of Trang Province, together with the known limonoid, granatumin L (6). The structures of these compounds were established by HR-ESIMS and extensive NMR spectroscopic data. The absolute configuration of 1 was unequivocally determined by single-crystal X-ray diffraction analysis, conducted with Cu Kα radiation; whereas that of 2 or 6 was established to be the same as that of 1 by the similarity of their electronic circular dichroism (ECD) spectra. In view of the marked antiviral activity of 6, its structure was modified via hydrolysis with alkaline KOH, esterification with diazomethane and various organic acids, and oximization with hydroxyamine. Finally, 18 derivatives, viz. 7⁻10, 8a⁻8i, 9a⁻9b, and 10a⁻10c, were obtained. In vitro antiviral activities of these derivatives against human immunodeficiency virus 1 (HIV-1) and influenza A virus (IAV) were evaluated. Most notably, 8i exhibited marked inhibitory activity against HIV-1 with an IC50 value of 15.98 ± 6.87 µM and a CC50 value greater than 100.0 µM; whereas 10b showed significant inhibitory activity against IAV with an IC50 value of 14.02 ± 3.54 µM and a CC50 value greater than 100.0 µM.


Assuntos
Antivirais/farmacologia , Limoninas/farmacologia , Meliaceae/química , Extratos Vegetais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Dicroísmo Circular , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , HIV-1/efeitos dos fármacos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Concentração Inibidora 50 , Limoninas/química , Limoninas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Sementes/química , Áreas Alagadas
3.
Sci Total Environ ; 613-614: 557-568, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28926810

RESUMO

With the increase in anthropogenic environmental disruption, the behavior of arsenic in the Baltic Sea has received more scientific attention because of its complex forms and toxicity, and was re-visited to determine if there have been measurable changes recently. A cruise was conducted in 10-19 May 2011 to investigate the species and distribution of total dissolved inorganic arsenic (TDIAs: [TDIAs]=[As(V)]+[As(III)]) revealing links between the hydrographic dynamics and biological/chemical reactions in the Baltic Sea. In addition, long-term (2002-2010) time-series investigations of particulate arsenic in the Gotland Basin were also conducted in February every year for monitoring purposes. The behavior of TDIAs was non-conservative due to the removal and regeneration processes occurring in the Baltic Sea. Biological scavenging plays a dominant role as sink for TDIAs, with removal amount of 3.1±1.6nmol/L above the pycnocline of the Baltic Sea. Significant regeneration of TDIAs was observed below the pycnocline of the Baltic Sea, which was closely related to hypoxia. The decomposition of organic arsenic and release from the sediment by desorption of As-bearing Fe and Mn oxides were thought to be two major sources for TDIAs regeneration. The median concentration of TDIAs (8.4nmol/L) was much lower than in most marginal seas and oceans, including the near-bottom water around a chemical weapon dumpsite (13.9nmol/L). The hypoxia in the deep water contributed to the increase in As(III) concentrations based on the relationship between As(III)/TDIAs ratio and apparent oxygen utilization. If the difference of As(III) profiles (1981 and 2011) actually represents a long-term increase in As(III) concentrations and a shoaling of the As(III) chemocline, these factors could enhance the toxic effects and extend the residence time of arsenic and, hence, potentially have negative impacts on fisheries and ecosystem health in the Baltic Sea.

4.
Sci Total Environ ; 593-594: 430-438, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28351811

RESUMO

Previous studies in the southern Yellow Sea (SYS) suggest that large spring phytoplankton blooms (SPBs) have occurred in recent decades. Elevated primary production in the water column can lead to the accumulation and transformation of trace elements. Two field study cruises (including two drifting anchor surveys) were conducted on 12-19 February and from 24 March to 15 April 2009, to investigate the impact of different SPB development periods on the concentrations of total dissolved inorganic arsenic (TDIAs: [TDIAs]=[As(V)]+[As(III)]) and As(III) (arsenite) in the SYS. The distribution of TDIAs in the study area was similar between the two field studies, with concentrations increasing from coastal to offshore areas. High arsenite concentrations and As(III)/TDIAs ratios were found in areas having high concentrations of chlorophyll-a, particularly in the subsurface waters of the central SYS during the drifting surveys, where a significant SPB occurred. Results show that the integrated arsenite concentrations increased at an average transformation rate of 0.53±0.24nmol/L/d within the 15days during the bloom, and data from the anchor drifting surveys indicated that approximately 15.1% of the arsenate in the euphotic zone (~30m depth) was converted to arsenite. In addition, 7.1% of TDIAs was scavenged from the water column by phytoplankton forming the blooms (a factor of 5 higher than expected). A preliminary box model was established to estimate the budget for TDIAs in the SYS in early spring (February to April). This showed that biological scavenging is an important sink for TDIAs, which may promote the transformation and migration of inorganic arsenic species, and thus have a substantial impact on the biogeochemical cycling of this element in the SYS. Depletion of arsenate in the upper waters could lead to arsenate stress, potentially damaging fisheries and the ecosystem.


Assuntos
Arsênio/análise , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano , Poluentes Químicos da Água/análise , China , Ecossistema , Oceanos e Mares , Água do Mar/química
5.
Huan Jing Ke Xue ; 35(12): 4502-10, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25826919

RESUMO

Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) µmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) µmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.


Assuntos
Monitoramento Ambiental , Estuários , Óxido Nitroso/análise , Estações do Ano , China , Nitrificação , Oceanos e Mares , Rios/química , Água do Mar/química
6.
Huan Jing Ke Xue ; 35(7): 2705-13, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25244858

RESUMO

The biogeochemical behavior of arsenic in the aquatic environment has already captured the attentions of scientists due to its complex forms and toxicity. Four cruises were carried out in April, August, October 2011 and January 2012 in the Sanggou Bay. The concentrations of total dissolved inorganic arsenic (TDIAs, TDIAs = [ As(5+] + [As(3+)]) and arsenite (As(3+)) were measured by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). The concentrations of TDIAs ranged from 3.4-12.4 nmol x L(-1) in April, 8.9-16.9 nmol x L(-1) in August, 14.7-21.3 nmol x L(-1) in October and 13.8-21.9 nmol x L(-1) in January. The concentrations of arsenite ranged from 0.3-2.1 nmol x L(-1), 0.4-3.8 nmol x L(-1), 1.8-4.0 nmol x L(-1) and 0.3-2.9 nmol x L(-1) during four cruises, respectively. The concentrations of TDIAs in spring and summer were lower than those in autumn and winter, and high values of TDIAs appeared in the bay-mouth and the coastal estuary. The concentrations of arsenite in spring and winter were lower than those in summer and autumn. The maximum As(3+)/TDIAs ratios appeared in summer. The mean value of TDIAs in the Sanggou Bay was (13.9 +/- 4.7) nmol x L(-1), which was lower than the national primary drinking in water Standards from USEPA and met the first grade water quality based on the environmental quality standards for surface water of China. It indicates that there is no obvious anthropogenic pollution. The concentrations of TDIAs in the Sanggou Bay were lower than those in the Ailian Bay and the Lidao Bay in spring and summer due to the different hydrological environments and terrestrial inputs. Riverine input, incursion of Yellow Sea and biological activities were the three main factors impacting the distribution of TDIAs in the Sanggou Bay, and the influence of aquaculture activities was particularly significant. The enrichment of arsenic by aquaculture may lead to potential ecological crisis and food safety problems, and need to be paid more attentions to ensure the sustainable development of aquaculture in the Sanggou Bay.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Estações do Ano , Poluentes Químicos da Água/análise , Aquicultura , Baías , China , Conservação dos Recursos Naturais , Estuários , Qualidade da Água
7.
Huan Jing Ke Xue ; 35(2): 547-54, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24812946

RESUMO

Antimony has been ubiquitously present in the aquatic environment as a toxic and rare metalloid element. The contamination of antimony and its compounds in the environment is increasingly severe, so it has been received extensive attention by the international scientific community. The cruise was carried out in the coastal area of Zhejiang and Fujian provinces in the East China Sea (ECS) in May 2008. The concentrations of total dissolved inorganic antimony (TDISb) were measured by Hydride Generation-Atomic Fluorescence (HG-AFS). The concentration ranges of TDISb in the surface and bottom layer were 0.68-5.64 nmol x L(-1) and 0.71-5.25 nmol x L(-1) with averages of 2.25 and 1.79 nmol x L(-1), respectively. The concentration of TDISb in the study area was lower than the environmental quality standards for surface water of China and drinking water standards of World Health Organization (about 41.08 nmol x L(-1)), indicating that it remained at the pristine level. The concentration of TDISb decreased gradually from the coastal area to the central ECS shelf with higher concentration in the surface layer than the bottom. Water mass mixing, adsorption/desorption behavior on the surface of the suspended particulate matters (SPM) and biological activities were the main influence factors of TDISb biogeochemistry in the study area.


Assuntos
Antimônio/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Adsorção , China , Poluentes Ambientais/normas
8.
Huan Jing Ke Xue ; 34(4): 1315-23, 2013 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-23798108

RESUMO

The distributions and pollution status of heavy metals in the suspended particles were investigated in the Wanquan and Wenchang/Wenjiao estuaries and the coastal area of eastern Hainan in July 2008. The concentrations of metal elements (Al, Fe, Mn, Cr, Cu, Ni, V, Zn) were determined by ICP-AES after microwave digestion. Multivariate statistical methods (e. g. correlation analysis and principal factor analysis) were used to discuss the major factors controlling the variability of heavy metal concentrations and the pollution status in those areas. There was an obvious variability in particulate metal concentrations from upstream to estuary of both rivers. The concentrations first increased with increasing salinity and then decreased with further increase of the salinity; the concentrations were slightly higher at the coastal area in the east. The variability of particulate metal concentrations reduced significantly after the normalization by Al, indicating the effects of grain size. Enrichment factor calculation results showed that there was heavy metal pollution (especially Cu, Ni) in the Wenchang/Wenjiao River and estuary, while the situation in Wanquan River remained at pristine level. Concentrations of particulate metals in the study area were mainly controlled by source geology and provenance, as well as contamination from the discharge of waste water and biological activity.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Estuários , Análise Multivariada , Oceanos e Mares , Tamanho da Partícula , Rios
9.
Huan Jing Ke Xue ; 33(3): 720-6, 2012 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-22624360

RESUMO

The concentrations of total dissolved inorganic arsenic (TDIAs) were measured by Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). Two cruises were carried out in the river, estuary, coastal area and groundwater of eastern Hainan in December 2006 and August 2007. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in December 2006 were 4.0-9.4, 1.3-13.3, 13.3-17.3 nmol x L(-1), respectively. The concentrations of TDIAs in the Wanquan and Wenchang/Wenjiao rivers and their estuaries, coastal area in August 2007 were 1.6-15.5, 2.4-15.9, 10.8-17.6 nmol x L(-1), respectively. There was no significantly seasonal variation of TDIAs in the rivers and estuaries during the dry and wet seasons. Compared with other areas in the world, the concentration of TDIAs in the Eastern Hainan remained at pristine levels. TDIAs showed conservatively mixing in the both estuaries. The concentration of TDIAs of groundwater was below detection limit (BDL)-41.7 nmol x L(-1). The submarine groundwater discharge (SGD) to the coastal area was estimated in the drainage basin of Wenchang/Wenjiao river based on the average concentration of TDIAs in the groundwater and SGD water discharge, with the value of 1 153 mol x a(-1). Budget estimation indicated that the SGD discharge is one of the important sources of arsenic in the coastal area.


Assuntos
Arsenicais/análise , Monitoramento Ambiental , Compostos Inorgânicos/análise , Poluentes Químicos da Água/análise , China , Oceanos e Mares , Rios , Estações do Ano , Solubilidade
10.
Mar Pollut Bull ; 60(9): 1591-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20427060

RESUMO

Inorganic or bulk organic chemical indicators, including organic carbon (OC), total nitrogen, organic nitrogen (ON), fixed ammonium (N(fix)), exchangeable ammonium, exchangeable nitrate, organic phosphorus (OP), inorganic phosphorus (IP), and biogenic silica (BSi), were examined in a 3-m core collected in Jiaozhou Bay (JZB) to decipher how the environment has changed during the preceding two centuries of increasing anthropogenic influence in this region. Concentrations of BSi, OC, and OP reveal overall increases to ca.30 cm ( approximately 1984), then decreased toward the surface, probably reflecting a decrease in the productivity of overlying waters since 1984. Aquaculture might play an important role in the decrease of nutrient elements in the upper layers recorded in sediments. The decreased molar BSi/OC ratios upcore may be due to a change in dominance from large- to small-sized diatoms, as shown in other research. However, the shift may also be related to changes from heavily-silicified to lightly-silicified diatoms or to non-siliceous forms such as dinoflagellates. ON concentrations increased towards the surface sediment, which is most likely consistent with the increase in fertilizer application and wastewater discharge. Concentrations of IP, total P, and N(fix) all decreased conspicuously upcore at 41 cm depth ( approximately 1977), and were largely consistent with the decrease in rainfall and freshwater discharge to JZB. Our data suggest that the environment has significantly changed since the 1980s. Anthropogenic activities in the watersheds may exert a substantial influence on carbon cycling processes in estuaries and potentially the coastal ocean.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/análise , Compostos de Nitrogênio/análise , Organofosfatos/análise , Animais , Aquicultura , Monitoramento Ambiental/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA