Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206158

RESUMO

The development of highly thermally conductive composites with excellent electrical insulation has attracted extensive attention, which is of great significance to solve the increasingly severe heat concentration issue of electronic equipment. Herein, we report a new strategy to prepare boron nitride nanosheets (BNNSs) via an ion-assisted liquid-phase exfoliation method. Then, silver nanoparticle (AgNP) modified BNNS (BNNS@Ag) was obtained by in situ reduction properties. The exfoliation yield of BNNS was approximately 50% via the ion-assisted liquid-phase exfoliation method. Subsequently, aramid nanofiber (ANF)/BNNS@Ag composites were prepared by vacuum filtration. Owing to the "brick-and-mortar" structure formed inside the composite and the adhesion of AgNP, the interfacial thermal resistance was effectively reduced. Therefore, the in-plane thermal conductivity of ANF/BNNS@Ag composites was as high as 11.51 W m-1 K-1, which was 233.27% higher than that of pure ANF (3.45 W m-1 K-1). The addition of BNNS@Ag maintained tensile properties (tensile strength of 129.14 MPa). Moreover, the ANF/BNNS@Ag films also had good dielectric properties and the dielectric constant was below 2.5 (103 Hz). Hence, the ANF/BNNS@Ag composite shows excellent thermal management performance, and the electrical insulation and mechanical properties of the matrix are retained, indicating its potential application prospects in high pressure and high temperature application environments.

2.
Polymers (Basel) ; 13(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577994

RESUMO

Materials with excellent thermal stability, mechanical, and insulating properties are highly desirable for electrical equipment with high voltage and high power. However, simultaneously integrating these performance portfolios into a single material remains a great challenge. Here, we describe a new strategy to prepare composite film by combining one-dimensional (1D) rigid aramid nanofiber (ANF) with 2D alumina (Al2O3) nanoplates using the carboxylated chitosan acting as hydrogen bonding donors as well as soft interlocking agent. A biomimetic nacreous 'brick-and-mortar' structure with a 3D hydrogen bonding network is constructed in the obtained ANF/chitosan/Al2O3 composite films, which provides the composite films with exceptional mechanical and dielectric properties. The ANF/chitosan/Al2O3 composite film exhibits an ultrahigh electric breakdown strength of 320.1 kV/mm at 15 wt % Al2O3 loading, which is 50.6% higher than that of the neat ANF film. Meanwhile, a large elongation at break of 17.22% is achieved for the composite film, integrated with high tensile strength (~233 MPa), low dielectric loss (<0.02), and remarkable thermal stability. These findings shed new light on the fabrication of multifunctional insulating materials and broaden their practical applications in the field of advanced electrics and electrical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA