Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(1)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37788663

RESUMO

The electrodeposition method has recently been developed for the fabrication of perovskite solar cells due to its potential advantages in commercial preparation. However, there is few studies on the preparation of perovskite solar cells by the electrodeposition method, especially on the perovskite FAPbI3-based solar cells. Herein, we fabricated the mixed perovskite FA1-yCsyPbBrxI3-xsolar cells by an optimized electrodeposition method, in which the electrodeposited PbO2reacts directly with FAI and an appropriate amount of CsBr dopants. The corresponding solar cells display the best PCE of 4.97%. By regulating the growth temperature in the reaction between PbO2and FAI/CsBr, the efficiency of the mixed perovskite solar cells can be promoted to 10.18%. These results illustrate that the element doping and growth environment regulation can optimize the quality of the perovskite films, thus promoting the efficiency of the perovskite solar cells. With further optimizing the growth process in the electrodeposition method, it is expected to open up a new commercial preparation route for the perovskite solar cells in the near future.

2.
Small ; 13(19)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371434

RESUMO

Though various efforts on modification of electrodes are still undertaken to improve the efficiency of perovskite solar cells, attributing to the large scope of these methods, it is of significance to unveil the working principle systematically. Herein, inverted perovskite solar cells based on indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3 NH3 PbI3 /phenyl-C61-butyric acid methyl ester (PC61 BM)/buffer metal/Al are constructed. Through the choice of different buffer metals to tune work function of the cathode, the contact nature of the active layer with the cathode could be manipulated well. In comparison with the device using Au/Al as the electrode that shows an unfavorable band bending for conducting the excited electrons to the cathode, the one with Ca/Al presents a dramatically improved efficiency over 17.1%, ascribed to the favorable band bending at the interface of the cathode with the active layer. Details for tuning the band bending and the corresponding charge transfer mechanism are given in a systematic manner. Thus, a general guideline for constructing perovskite photovoltaic devices efficiently is provided.

3.
J Phys Chem Lett ; 14(5): 1140-1147, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36705534

RESUMO

All-inorganic CsPbI1.5Br1.5 perovskite solar cells are considered as top cell candidates for tandem cells as a result of their excellent thermal stability and photoelectric performance. However, their power conversion efficiencies (PCEs) are still low and far below the theoretical limit mainly as a result of the severe non-radiative recombination and optical loss. Herein, we introduce an versatile method to construct a surface multi-cationic heterojunction to achieve an efficient and stable CsPbI1.5Br1.5 perovskite solar cell. By precisely controlling the content of FA+ and MA+ on PbBr2-rich perovskite films, a high-quality heterojunction layer is formed to help effectively passivate the surface defects and reduce the optical loss of the CsPbI1.5Br1.5 perovskite. In addition, the incorporation of a heterojunction layer can also improve energy-level alignment and reduce interfacial charge recombination loss. As a result, the champion device with the incorporation of SMH exhibits a PCE of 14.11%, which presents the highest reported efficiency for inorganic CsPbI1.5Br1.5 solar cells thus far while retaining 85% of the initial efficiency after 1000 h of storage without encapsulation.

4.
RSC Adv ; 11(45): 28211-28222, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480769

RESUMO

The low separation efficiency of photogenerated charges and severe photocorrosion seriously impeded the application of CdS in photocatalytic water splitting. Here we report new routes to improve the photocatalytic performance of CdS nanowires (NWs) by decorating with Ag2S nanoparticles, so Ag2S/CdS heterojunction is constructed. The Ag2S/CdS heterojunction exhibited optimal photocatalytic H2 evolution rate of 777.3 µmol h-1 g-1, which is 12.1 times higher than that of pure CdS. The intrinsic characteristics of Ag2S/CdS nanocomposites, such as structure, optical properties, and surface chemical state are systematically studied by experimental characterizations and theoretical calculations. The comprehensive analysis demonstrates that the heterojunction between Ag2S and CdS accelerates photoinduced electrons transfer from CdS to Ag2S, enhancing their ability for water splitting. Meanwhile, the holes on the valence band of CdS react with the sacrificial agents, thus leading to the efficient separation of photogenerated electron-hole pairs. This work offers a simple route to synthesize one-dimensional CdS-based nanocomposites for efficient energy conversion driven by visible light.

5.
ACS Appl Mater Interfaces ; 12(35): 39063-39073, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805927

RESUMO

The development of highly crystalline perovskite films with large crystal grains and few surface defects is attractive to obtain high-performance perovskite solar cells (PSCs) with good device stability. Herein, we simultaneously improve the power conversion efficiency (PCE) and humid stability of the CH3NH3PbI3 (CH3NH3 = MA) device by incorporating small organic molecule IT-4F into the perovskite film and using a buffer layer of PFN-Br. The presence of IT-4F in the perovskite film can successfully improve crystallinity and enhance the grain size, leading to reduced trap states and longer lifetime of the charge carrier, and make the perovskite film hydrophobic. Meanwhile, as a buffer layer, PFN-Br can accelerate the separation of excitons and promote the transfer process of electrons from the active layer to the cathode. As a consequence, the PSCs exhibit a remarkably improved PCE of 20.55% with reduced device hysteresis. Moreover, the moisture-resistive film-based devices retain about 80% of their initial efficiency after 30 days of storage in relative humidity of 10-30% without encapsulation.

6.
J Phys Chem Lett ; 11(3): 927-934, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31957447

RESUMO

High power conversion efficiency can be realized by using a ternary bulk heterojunction with complementary absorption spectra in organic solar cells. However, as the development of nonfullerene acceptors with a broad absorption spectrum makes the absorption efficiency of the photovoltaic devices close to optimal, such a strategy needs modifying. In particular, charge transfer between the two acceptors is necessary to be considered. Herein, we purposely design a ternary system based on PTB7-Th:COi8DFIC:ITIC-4F. Though the presence of ITIC-4F in PTB7-Th:COi8DFIC could not broaden the absorption spectrum obviously, the formed cascade-energy-level alignment is beneficial for promoting and balancing exciton separation and charge transport between the donor and two acceptors and even between the acceptors. Insights into the charge transport route in the completed system are provided via using the techniques including photoluminescence spectroscopy and pump-probe photoconductivity spectroscopy. This work provides a new idea for designing highly efficient ternary organic solar cells.

7.
RSC Adv ; 9(34): 19772-19779, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35519398

RESUMO

Controllable growth of perovskite nanowires is very important for various applications in optical and electrical devices. Although significant progress has been achieved in the solution method, a deep understanding of the mechanics of growing perovskite nanowires is still lacking. Herein, we developed an electrochemical method for growing the perovskite nanowires and studied the growth processes systematically. The initial nucleation and crystal growth could be controlled by simply varying the additive solvents, thus leading to two stable size ratio distributions of the perovskite nanowires. Further, with compositional engineering, the bandgap of the perovskites could be tuned from 1.59 eV to 3.04 eV. All the as-grown perovskite nanowires displayed a unique structure with high crystallization quality, contributing to a very high responsivity of 2.1 A W-1 and a large on/off ratio of 5 × 103 for the photodetectors based on the CH3NH3PbBr3 nanowires. All of these findings demonstrate that the optimized solution method offers a new approach to synthesize perovskite nanowires for applications in photoelectric devices.

8.
Polymers (Basel) ; 10(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30966042

RESUMO

Polymer solar cells have shown good prospect for development due to their advantages of low-cost, light-weight, solution processable fabrication, and mechanical flexibility. Their compatibility with the industrial roll-to-roll manufacturing process makes it superior to other kind of solar cells. Normally, indium tin oxide (ITO) is adopted as the transparent electrode in polymer solar cells, which combines good conductivity and transparency. However, some intrinsic weaknesses of ITO restrict its large scale applications in the future, including a high fabrication price using high temperature vacuum deposition method, scarcity of indium, brittleness and scaling up of resistance with the increase of area. Some substitutes to ITO have emerged in recent years, which can be used in flexible polymer solar cells. This article provides the review on recent progress using other transparent electrodes, including carbon nanotubes, graphene, metal nanowires and nanogrids, conductive polymer, and some other electrodes. Device stability is also discussed briefly.

9.
Nanoscale ; 8(47): 19536-19540, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27878188

RESUMO

Plasmonic nanolasers have ushered in a paradigm of deep sub-wavelength coherent optical sources with ultrafast dynamics that exploit the strong confinement capabilities of metals. Although these devices are usually associated with higher thresholds due to absorption in metals, the high gain inorganic II-VI and III-V semiconductor materials have allowed the realization of plasmonic nanolasers operating under ambient conditions. In this work, we introduce single-crystalline lead halide perovskite (CH3NH3PbI3) nanowires as an organic-inorganic semiconducting gain material to the plasmonic laser community. We demonstrate plasmonic laser action using a hybrid geometry whereby the perovskite nanowires are placed on a silver substrate with an insulating spacer layer. We report relatively low threshold operation under ambient conditions (13.5 µJ cm-2), and the devices work well even at temperatures up to 43.6 °C. The demonstration highlights the high optical gain achievable in perovskite materials and thus provides a solution to high gain materials for plasmonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA